# this is a python rewrite of the original ijm published at # https://github.com/Hyojung-Choo/Myosoft/blob/Myosoft-hub/Scripts/central%20nuclei%20counter.ijm # IJ imports # TODO: are the imports RoiManager and ResultsTable needed when using the services? from ij import IJ, WindowManager as wm from ij.plugin import Duplicator, RoiEnlarger, RoiScaler from trainableSegmentation import WekaSegmentation from de.biovoxxel.toolbox import Extended_Particle_Analyzer # Bio-formats imports from loci.plugins import BF from loci.plugins.in import ImporterOptions # python imports import time import os #@ String (visibility=MESSAGE, value="<html><b> Welcome to Myosoft! </b></html>") msg1 #@ File (label="Select fiber-ROIs zip-file", style="file") roi_zip #@ File (label="Select image file", description="select your image") path_to_image #@ File (label="Select directory for output", style="directory") output_dir #@ Boolean (label="close image after processing", description="tick this box when using batch mode", value=False) close_raw #@ String (visibility=MESSAGE, value="<html><b> channel positions in the hyperstack </b></html>") msg5 #@ Integer (label="Fiber staining 1 channel number (0=n.a.)", style="slider", min=0, max=5, value=1) fiber_channel_1 #@ Integer (label="Fiber staining 2 channel number (0=n.a.)", style="slider", min=0, max=5, value=2) fiber_channel_2 #@ Integer (label="Fiber staining 3 channel number (0=n.a.)", style="slider", min=0, max=5, value=3) fiber_channel_3 #@ Integer (label="minimum fiber intensity (0=auto)", description="0 = automatic threshold detection", value=0) min_fiber_intensity_1 #@ Integer (label="minimum fiber intensity (0=auto)", description="0 = automatic threshold detection", value=0) min_fiber_intensity_2 #@ Integer (label="minimum fiber intensity (0=auto)", description="0 = automatic threshold detection", value=0) min_fiber_intensity_3 #@ ResultsTable rt #@ RoiManager rm def fix_ij_options(): """put IJ into a defined state """ # disable inverting LUT IJ.run("Appearance...", " menu=0 16-bit=Automatic") # set foreground color to be white, background black IJ.run("Colors...", "foreground=white background=black selection=red") # black BG for binary images and pad edges when eroding IJ.run("Options...", "black pad") # set saving format to .txt files IJ.run("Input/Output...", "file=.txt save_column save_row") # ============= DON’T MOVE UPWARDS ============= # set "Black Background" in "Binary Options" IJ.run("Options...", "black") # scale when converting = checked IJ.run("Conversions...", "scale") def fix_ij_dirs(path): """use forward slashes in directory paths Parameters ---------- path : string a directory path obtained from dialogue or script parameter Returns ------- string a more robust path with forward slashes as separators """ fixed_path = str(path).replace("\\", "/") # fixed_path = fixed_path + "/" return fixed_path def open_image_with_BF(path_to_file): """ use Bio-Formats to opens the first image from an image file path Parameters ---------- path_to_file : string path to the image file Returns ------- ImagePlus the first imp stored in a give file """ options = ImporterOptions() options.setColorMode(ImporterOptions.COLOR_MODE_GRAYSCALE) options.setAutoscale(True) options.setId(path_to_file) imps = BF.openImagePlus(options) # is an array of ImagePlus return imps[0] def fix_BF_czi_imagetitle(imp): image_title = os.path.basename( imp.getTitle() ) image_title = image_title.replace(".czi", "") image_title = image_title.replace(" ", "_") image_title = image_title.replace("_-_", "") image_title = image_title.replace("__", "_") image_title = image_title.replace("#", "Series") return image_title def clear_ij_roi_manager(rm): """delete all ROIs from the RoiManager Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager """ rm.runCommand('reset') def get_threshold_from_method(imp, channel, method): """returns the threshold value of chosen IJ AutoThreshold method in desired channel Parameters ---------- imp : ImagePlus the imp from which to get the threshold value channel : integer the channel in which to get the treshold method : string the AutoThreshold method to use Returns ------- list the upper and the lower threshold (integer values) """ imp.setC(channel) # starts at 1 ip = imp.getProcessor() ip.setAutoThreshold(method + " dark") lower_thr = ip.getMinThreshold() upper_thr = ip.getMaxThreshold() ip.resetThreshold() return lower_thr, upper_thr def measure_in_all_rois( imp, channel, rm ): """measures in all ROIS on a given channel of imp all parameters that are set in IJ "Set Measurements" Parameters ---------- imp : ImagePlus the imp to measure on channel : integer the channel to measure in. starts at 1. rm : RoiManager a reference of the IJ-RoiManager """ imp.setC(channel) rm.runCommand(imp,"Deselect") rm.runCommand(imp,"Measure") def change_all_roi_color( rm, color ): """change the color of all ROIs in the RoiManager Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager color : string the desired color. e.g. "green", "red", "yellow", "magenta" ... """ number_of_rois = rm.getCount() for roi in range( number_of_rois ): rm.select(roi) rm.runCommand("Set Color", color) def change_subset_roi_color( rm, selected_rois, color ): """change the color of selected ROIs in the RoiManager Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager selected_rois : array ROIs in the RoiManager to change color : string the desired color. e.g. "green", "red", "yellow", "magenta" ... """ rm.runCommand("Deselect") rm.setSelectedIndexes(selected_rois) rm.runCommand("Set Color", color) rm.runCommand("Deselect") def show_all_rois_on_image(rm, imp): """shows all ROIs in the ROiManager on imp Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager imp : ImagePlus the imp on which to show the ROIs """ imp.show() rm.runCommand(imp,"Show All") def save_all_rois(rm, target): """save all ROIs in the RoiManager as zip to target path Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager target : string the path in to store the ROIs. e.g. /my-images/resulting_rois.zip """ rm.runCommand("Save", target) def save_selected_rois( rm, selected_rois, target ): """save selected ROIs in the RoiManager as zip to target path Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager selected_rois : array ROIs in the RoiManager to save target : string the path in to store the ROIs. e.g. /my-images/resulting_rois_subset.zip """ rm.runCommand("Deselect") rm.setSelectedIndexes(selected_rois) rm.runCommand("save selected", target) rm.runCommand("Deselect") def select_positive_fibers( imp, channel, rm, min_intensity ): """For all ROIs in the RoiManager, select ROIs based on intensity measurement in given channel of imp. See https://imagej.nih.gov/ij/developer/api/ij/process/ImageStatistics.html Parameters ---------- imp : ImagePlus the imp on which to measure channel : integer the channel on which to measure. starts at 1 rm : RoiManager a reference of the IJ-RoiManager min_intensity : integer the selection criterion (here: intensity threshold) Returns ------- array a selection of ROIs which passed the selection criterion (are above the threshold) """ imp.setC(channel) all_rois = rm.getRoisAsArray() selected_rois = [] for i, roi in enumerate(all_rois): imp.setRoi(roi) stats = imp.getStatistics() if stats.mean > min_intensity: selected_rois.append(i) return selected_rois def open_rois_from_zip( rm, path ): """open RoiManager ROIs from zip and adds them to the RoiManager Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager path : string path to the ROI zip file """ rm.runCommand("Open", path) def preset_results_column( rt, column, value): """pre-set all rows in given column of the IJ-ResultsTable with desired value Parameters ---------- rt : ResultsTable a reference of the IJ-ResultsTable column : string the desired column. will be created if it does not yet exist value : string or float or integer the value to be set """ for i in range( rt.size() ): rt.setValue(column, i, value) rt.show("Results") def add_results( rt, column, row, value ): """adds a value in desired rows of a given column Parameters ---------- rt : ResultsTable a reference of the IJ-ResultsTable column : string the column in which to add the values row : array the row numbers in which too add the values. value : string or float or integer the value to be set """ for i in range( len( row ) ): rt.setValue(column, row[i], value) rt.show("Results") def enhance_contrast( imp ): """use "Auto" Contrast & Brightness settings in each channel of imp Parameters ---------- imp : ImagePlus the imp on which to change C&B """ for channel in range( imp.getDimensions()[2] ): imp.setC(channel + 1) # IJ channels start at 1 IJ.run(imp, "Enhance Contrast", "saturated=0.35") def renumber_rois(rm): """rename all ROIs in the RoiManager according to their number Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager """ number_of_rois = rm.getCount() for roi in range( number_of_rois ): rm.rename( roi, str(roi + 1) ) def setup_defined_ij(rm, rt): """set up a clean and defined Fiji user environment Parameters ---------- rm : RoiManager a reference of the IJ-RoiManager rt : ResultsTable a reference of the IJ-ResultsTable """ fix_ij_options() rm.runCommand('reset') rt.reset() IJ.log("\\Clear") execution_start_time = time.time() setup_defined_ij(rm, rt) # open image using Bio-Formats path_to_image = fix_ij_dirs(path_to_image) raw = open_image_with_BF(path_to_image) # get image info raw_image_calibration = raw.getCalibration() raw_image_title = fix_BF_czi_imagetitle(raw) # take care of paths and directories # output_dir = os.path.dirname(str(roi_zip)) # output_dir = fix_ij_dirs(output_dir) input_rois_path = fix_ij_dirs( roi_zip ) output_dir = fix_ij_dirs(output_dir) + "/2b_fibertyping/" if not os.path.exists( output_dir ): os.makedirs( output_dir ) # open ROIS and show on image open_rois_from_zip( rm, str(input_rois_path) ) change_all_roi_color(rm, "blue") show_all_rois_on_image( rm, raw ) # update the log for the user IJ.log( "Now working on " + str(raw_image_title) ) if raw_image_calibration.scaled() == False: IJ.log("Your image is not spatially calibrated! Size measurements are only possible in [px].") IJ.log( " -- settings used -- ") IJ.log( "Selected fiber-ROIs zip-file = " + str(input_rois_path) ) IJ.log( "Fiber staining 1 channel number = " + str(fiber_channel_1) ) IJ.log( "Fiber staining 2 channel number = " + str(fiber_channel_2) ) IJ.log( "Fiber staining 3 channel number = " + str(fiber_channel_3) ) IJ.log( " -- settings used -- ") # measure size & shape, IJ.run("Set Measurements...", "area perimeter shape feret's redirect=None decimal=4") IJ.run("Clear Results", "") measure_in_all_rois( raw, fiber_channel_1, rm ) # loop through the fiber channels, check if positive, add info to results table all_fiber_channels = [fiber_channel_1, fiber_channel_2, fiber_channel_3] all_min_fiber_intensities = [min_fiber_intensity_1, min_fiber_intensity_2, min_fiber_intensity_3] roi_colors = ["green", "orange", "red"] all_fiber_subsets =[ [], [], [] ] for index, fiber_channel in enumerate(all_fiber_channels): if fiber_channel > 0: preset_results_column( rt, "channel " + str(fiber_channel) + " positive (" + roi_colors[fiber_channel-1] + ")", "NO" ) if all_min_fiber_intensities[index] == 0: all_min_fiber_intensities[index] = get_threshold_from_method(raw, fiber_channel, "Mean")[0] IJ.log( "fiber channel " + str(fiber_channel) + " intensity threshold: " + str(all_min_fiber_intensities[index]) ) positive_fibers = select_positive_fibers( raw, fiber_channel, rm, all_min_fiber_intensities[index] ) all_fiber_subsets[index] = positive_fibers if len(positive_fibers) > 0: change_subset_roi_color(rm, positive_fibers, roi_colors[index]) save_selected_rois( rm, positive_fibers, output_dir + "positive_fiber_rois_c" + str( fiber_channel ) + ".zip") add_results( rt, "channel " + str(fiber_channel) + " positive (" + roi_colors[fiber_channel-1] + ")", positive_fibers, "YES") # single positive positive_c1 = all_fiber_subsets[0] positive_c2 = all_fiber_subsets[1] positive_c3 = all_fiber_subsets[2] # double positive positive_c1_c2 = list( set(all_fiber_subsets[0]).intersection(all_fiber_subsets[1]) ) positive_c1_c3 = list( set(all_fiber_subsets[0]).intersection(all_fiber_subsets[2]) ) positive_c2_c3 = list( set(all_fiber_subsets[1]).intersection(all_fiber_subsets[2]) ) # triple positive positive_c1_c2_c3 = list( set(positive_c1_c2).intersection(all_fiber_subsets[2]) ) # update ROI color & results table for double and triple positives if len(positive_c1_c2) > 0: preset_results_column( rt, "channel 1,2 positive (magenta)", "NO" ) change_subset_roi_color(rm, positive_c1_c2, "magenta") save_selected_rois( rm, positive_c1_c2, output_dir + "positive_fiber_rois_c1_c2.zip") add_results( rt, "channel 1,2 positive (magenta)", positive_c1_c2, "YES") if len(positive_c1_c3) > 0: preset_results_column( rt, "channel 1,3 positive (yellow)", "NO" ) change_subset_roi_color(rm, positive_c1_c3, "yellow") save_selected_rois( rm, positive_c1_c3, output_dir + "positive_fiber_rois_c1_c3.zip") add_results( rt, "channel 1,3 positive (yellow)", positive_c1_c3, "YES") if len(positive_c2_c3) > 0: preset_results_column( rt, "channel 2,3 positive (cyan)", "NO" ) change_subset_roi_color(rm, positive_c2_c3, "cyan") save_selected_rois( rm, positive_c2_c3, output_dir + "positive_fiber_rois_c2_c3.zip") add_results( rt, "channel 2,3 positive (cyan)", positive_c2_c3, "YES") if len(positive_c1_c2_c3) > 0: preset_results_column( rt, "channel 1,2,3 positive (white)", "NO" ) change_subset_roi_color(rm, positive_c1_c2_c3, "white") save_selected_rois( rm, positive_c1_c2_c3, output_dir + "positive_fiber_rois_c1_c2_c3.zip") add_results( rt, "channel 1,2,3 positive (white)", positive_c1_c2_c3, "YES") # save all results together save_all_rois( rm, output_dir + "all_fiber_type_rois_color-coded.zip" ) rt.save(output_dir + "fibertyping_results.csv") # dress up the original image, save a overlay-png, present original to the user raw.show() show_all_rois_on_image( rm, raw ) raw.setDisplayMode(IJ.COMPOSITE) enhance_contrast( raw ) IJ.run("From ROI Manager", "") # ROIs -> overlays so they show up in the saved png qc_duplicate = raw.duplicate() IJ.saveAs(qc_duplicate, "PNG", output_dir + raw_image_title + "_fibertyping") qc_duplicate.close() wm.toFront( raw.getWindow() ) IJ.run("Remove Overlay", "") raw.setDisplayMode(IJ.GRAYSCALE) show_all_rois_on_image( rm, raw ) total_execution_time_min = (time.time() - execution_start_time) / 60.0 IJ.log("total time in minutes: " + str(total_execution_time_min)) IJ.log( "~~ all done ~~" ) IJ.selectWindow("Log") IJ.saveAs("Text", str(output_dir + raw_image_title + "_fibertyping_Log")) if close_raw == True: raw.close()