# Get a list of all the files that are in a user-specified folder and get a list of full paths #' Internal utility functions for file handling #' @name utils_internal #' @description #' This file contains internal utility functions for file handling and processing #' @keywords internal #' @importFrom utils read.csv #' @importFrom stats setNames #' @import roxygen2 #' @examples #' \donttest{ #' # Load example data from package #' bind_data <- data_binding( #' path_to_the_projects_folder = system.file("extdata/to_merge/", package = "drugsens") #' ) #' } # list all the files list_all_files <- function(define_path, extension, recursive_search) { list_listed_files <- list.files( path = define_path, pattern = extension, ignore.case = TRUE, recursive = recursive_search, full.names = TRUE ) |> Filter( x = _, f = function(z) grepl(x = z, pattern = extension) ) return( list_listed_files ) } # Process a Single File #' @title Process a Single File #' @name process_file #' @description This function returns a processed single file #' @param file_path Path to the file #' @param extension String File extension to filter #' @keywords internal #' @return dataframe process_file <- function(file_path, # relabeling_map, extension) { message(paste0("Reading file: ", file_path)) # Read the CSV file into a data frame .data <- read.csv(file_path, stringsAsFactors = FALSE) extension <- sub(x = extension, pattern = "\\.", "") # get the name, relabeling of the markers WIP for (nam in names(list_of_relabeling)) { .data$Name <- gsub( x = as.character(.data$Name), pattern = nam, replacement = list_of_relabeling[[nam]], ignore.case = FALSE ) } # parse the data with the function .data <- string_parsing(.data) .data$filter_image <- apply(.data, 1, function(row) { paste( row["PID"], row["Date1"], row["DOC"], row["Tissue"], row["Image_number"], row["Treatment"], row["Concentration1"], row["Concentration2"], row["ConcentrationUnits1"], row["ConcentrationUnits2"], row["ReplicaOrNot"], row["Treatment_complete"], collapse = "_", sep = "_" ) }) return(.data) } #' Merge all the dataframes coming out from the QuPath #' @name data_binding #' @description #' This function identifies string patterns in the dataset, fills the dataframe #' with that information, and combines all data into a single file #' @import knitr #' @importFrom stringr str_extract #' @param path_to_the_projects_folder String/Path The path where the files coming out of QuPath are located #' @param files_extension_to_look_for String The extension of the file outputted from QuPath, (default is "csv") #' @param recursive_search Boolean, it defined the behavior of the file search, if recursive or not, (default is FALSE) #' @param forcePath String defining an alternative path to the confic file #' @return A concatenated dataframe from all the files within the indicated path #' @export #' @examples #' \dontrun{ #' bind_data <- data_binding(path_to_the_projects_folder = system.file("extdata/to_merge/", #' package = "drugsens")) #'} # Main function to bind data from multiple files data_binding <- function(path_to_the_projects_folder, files_extension_to_look_for = "csv", recursive_search = FALSE, forcePath = NULL) { # run configuration file make_run_config(forcePath = forcePath) # Validate input parameters if (!dir.exists(path_to_the_projects_folder)) { stop("The specified path does not exist.") } if (is.null(files_extension_to_look_for)) { stop("File extension to look for has to be provided.") } if (!is.list(list_of_relabeling) && !is.null(list_of_relabeling)) { stop("The relabeling information should be provided as a list.") } # List all files with the specified extension in the given folder list_csv_files <- list_all_files( path_to_the_projects_folder, files_extension_to_look_for, recursive_search ) # Process each file and combine the results df_list <- lapply( list_csv_files, process_file, files_extension_to_look_for ) combined_df <- do.call(rbind, df_list) # Return the combined dataframe return(combined_df) }