diff --git a/docker/README.md b/docker/README.md index b8e140b1bb65f20e11753d5b61e341a5936d6233..d6aa7d4f4053a1bf2ae43e8134975f80ccfabbff 100644 --- a/docker/README.md +++ b/docker/README.md @@ -61,7 +61,7 @@ Additional requirements We need the non-redundant [UniClust30 sequence database](https://uniclust.mmseqs.com/) to build sequence -profiles with HHblits. The following_files are required: +profiles with HHblits. The following files are required: * X_a3m.ffdata * X_a3m.ffindex @@ -106,7 +106,7 @@ Having everything setup, you can score model.pdb with SEQRES data stored in seqres.fasta using QMEANDisCo: ```terminal -docker run --workdir $(pwd) -v $(pwd):$(pwd) -v <PATH_TO_LOCAL_UNICLUST>:/uniclust30 -v <PATH_TO_LOCAL_QMTL>:/qmtl registry.scicore.unibas.ch/schwede/qmean:4.2.0 qmeandisco model.pdb --seqres seqres.fasta +docker run --workdir $(pwd) -v $(pwd):$(pwd) -v <PATH_TO_LOCAL_UNICLUST>:/uniclust30 -v <PATH_TO_LOCAL_QMTL>:/qmtl registry.scicore.unibas.ch/schwede/qmean:4.2.0 run_qmean.py model.pdb --seqres seqres.fasta ``` Additionally to the mounts specified above, the current working directory @@ -116,7 +116,7 @@ as workdir. The following gives more details on additional command line arguments: ```terminal -docker run registry.scicore.unibas.ch/schwede/qmean:4.2.0 qmeandisco --help +docker run registry.scicore.unibas.ch/schwede/qmean:4.2.0 run_qmean.py --help ``` Singularity