diff --git a/projects/phytoplasma-effectors/README.md b/projects/phytoplasma-effectors/README.md new file mode 100644 index 0000000000000000000000000000000000000000..1f7dec837ae5f3046451ee630ffd40b147cad075 --- /dev/null +++ b/projects/phytoplasma-effectors/README.md @@ -0,0 +1,18 @@ +# Modelling of phytoplasma effectors + +[Link to project in ModelArchive](https://modelarchive.org/doi/10.5452/ma-saps) (incl. background on project itself) + +Setup: +- Using AlphaFold v2.2 for monomer predictions with fairly default settings +- Conversion based only on PDB files without extra data +- CSV file with links to accession codes in UniProt + +Special features here: +- Generic code added to find best sequence match in UniProt history and report mismatches +- Sequences with remaining mismatches (here due to experimental assays) labelled in entity name +- One obsolete entry (SAP11_MBS linked to A0A1B3JKP4 in UniProt or UPI00083DE1DE in UniParc) +- pLDDT extracted from b-factors (simplest setup since no other QA scores anyway) + +Content: +- translate2modelcif.py : script to do conversion +- input_data: PDB files and CSV used for conversion diff --git a/projects/phytoplasma-effectors/input_data/accessions.csv b/projects/phytoplasma-effectors/input_data/accessions.csv new file mode 100644 index 0000000000000000000000000000000000000000..a9e351b9eab0a83341219089f8a63a1f07550142 --- /dev/null +++ b/projects/phytoplasma-effectors/input_data/accessions.csv @@ -0,0 +1,22 @@ +Accession,Name +Q2NJQ2,SAP54 +A0A0P7KHL3,SAP54_Peanut +A0A4Y5N0H8,SAP54_RP +Q2NJD7,SAP49 +Q2NJN9,SAP41 +Q2NJB0,SAP66 +A0A410HXL4,SAP11_WBDL +Q2NK94,SAP05 +Q2NJA6,SAP11 +Q2NII6,SAP13 +Q2NKA4,SAP21 +Q2NJZ9,SAP27 +Q2NIN8,SAP35 +Q2NJL8,SAP42 +Q2NJI2,SAP45 +Q2NJA8,SAP67 +Q2NJA7,SAP68 +Q2NK93,SAP06 +Q2NJJ6,SAP44 +Q2NJD6,SAP48 +A0A1B3JKP4,SAP11_MBS diff --git a/projects/phytoplasma-effectors/input_data/structures.zip b/projects/phytoplasma-effectors/input_data/structures.zip new file mode 100644 index 0000000000000000000000000000000000000000..91cc3f3f7bf7119669f78792ac9332ec2b467b66 Binary files /dev/null and b/projects/phytoplasma-effectors/input_data/structures.zip differ diff --git a/projects/phytoplasma-effectors/translate2modelcif.py b/projects/phytoplasma-effectors/translate2modelcif.py new file mode 100644 index 0000000000000000000000000000000000000000..e26ae244f202dc4d3ed8bfd173e4b19163fe916f --- /dev/null +++ b/projects/phytoplasma-effectors/translate2modelcif.py @@ -0,0 +1,977 @@ +#! /usr/local/bin/ost +# -*- coding: utf-8 -*- + +"""Translate models for Miguel from PDB + extra data into ModelCIF.""" + +# EXAMPLES for running: +""" +ost translate2modelcif.py ./structures ./accessions.csv ./modelcif \ + --compress > script_out.txt +""" + +import argparse +import datetime +import gzip +import os +import shutil +import sys +import zipfile +import pickle +import filecmp +import re +from timeit import default_timer as timer +import numpy as np +import requests +import ujson as json +import gemmi +import pandas as pd + +import ihm +import ihm.citations +import modelcif +import modelcif.associated +import modelcif.dumper +import modelcif.model +import modelcif.protocol +import modelcif.reference + +from ost import io, seq + + +def _parse_args(): + """Parse command line arguments.""" + parser = argparse.ArgumentParser( + formatter_class=argparse.RawDescriptionHelpFormatter, + description=__doc__, + ) + + parser.add_argument( + "model_dir", + type=str, + metavar="<MODEL DIR>", + help="Directory with PDB files to be translated.", + ) + parser.add_argument( + "metadata_file", + type=str, + metavar="<METADATA FILE>", + help="Path to CSV file with metadata.", + ) + parser.add_argument( + "out_dir", + type=str, + metavar="<OUTPUT DIR>", + help="Path to directory to store results.", + ) + parser.add_argument( + "--compress", + default=False, + action="store_true", + help="Compress ModelCIF file with gzip.", + ) + + opts = parser.parse_args() + + # check that model dir exists + if opts.model_dir.endswith("/"): + opts.model_dir = opts.model_dir[:-1] + if not os.path.exists(opts.model_dir): + _abort_msg(f"Model directory '{opts.model_dir}' does not exist.") + if not os.path.isdir(opts.model_dir): + _abort_msg(f"Path '{opts.model_dir}' does not point to a directory.") + # check metadata_file + if not os.path.exists(opts.metadata_file): + _abort_msg(f"Metadata file '{opts.metadata_file}' does not exist.") + if not os.path.isfile(opts.metadata_file): + _abort_msg(f"Path '{opts.metadata_file}' does not point to a file.") + # check out_dir + if opts.out_dir.endswith("/"): + opts.out_dir = opts.out_dir[:-1] + if not os.path.exists(opts.out_dir): + os.makedirs(opts.out_dir) + if not os.path.isdir(opts.out_dir): + _abort_msg(f"Path '{opts.out_dir}' does not point to a directory.") + return opts + + +# pylint: disable=too-few-public-methods +class _GlobalPLDDT(modelcif.qa_metric.Global, modelcif.qa_metric.PLDDT): + """Predicted accuracy according to the CA-only lDDT in [0,100]""" + name = "pLDDT" + software = None + +class _LocalPLDDT(modelcif.qa_metric.Local, modelcif.qa_metric.PLDDT): + """Predicted accuracy according to the CA-only lDDT in [0,100]""" + name = "pLDDT" + software = None +# pylint: enable=too-few-public-methods + + +def _get_res_num(r, use_auth=False): + """Get res. num. from auth. IDs if reading from mmCIF files.""" + if use_auth: + return int(r.GetStringProp("pdb_auth_resnum")) + else: + return r.number.num + + +def _get_ch_name(ch, use_auth=False): + """Get chain name from auth. IDs if reading from mmCIF files.""" + if use_auth: + return ch.GetStringProp("pdb_auth_chain_name") + else: + return ch.name + + +class _OST2ModelCIF(modelcif.model.AbInitioModel): + """Map OST entity elements to ihm.model""" + + def __init__(self, *args, **kwargs): + """Initialise a model""" + self.ost_entity = kwargs.pop("ost_entity") + self.asym = kwargs.pop("asym") + + # use auth IDs for res. nums and chain names + self.use_auth = False + + # fetch plddts per residue + self.plddts = [] + for res in self.ost_entity.residues: + b_factors = [a.b_factor for a in res.atoms] + assert len(set(b_factors)) == 1 # must all be equal! + self.plddts.append(b_factors[0]) + + super().__init__(*args, **kwargs) + + + + def get_atoms(self): + # ToDo [internal]: Take B-factor out since its not a B-factor? + # NOTE: this assumes that _get_res_num maps residue to pos. in seqres + # within asym + for atm in self.ost_entity.atoms: + yield modelcif.model.Atom( + asym_unit=self.asym[_get_ch_name(atm.chain, self.use_auth)], + seq_id=_get_res_num(atm.residue, self.use_auth), + atom_id=atm.name, + type_symbol=atm.element, + x=atm.pos[0], + y=atm.pos[1], + z=atm.pos[2], + het=atm.is_hetatom, + biso=atm.b_factor, + occupancy=atm.occupancy, + ) + + def add_scores(self): + """Add QA metrics from AF2 scores.""" + # global scores + self.qa_metrics.append( + _GlobalPLDDT(np.mean(self.plddts)) + ) + + # local scores + i = 0 + for chn_i in self.ost_entity.chains: + ch_name = _get_ch_name(chn_i, self.use_auth) + for res_i in chn_i.residues: + # local pLDDT + res_num = _get_res_num(res_i, self.use_auth) + self.qa_metrics.append( + _LocalPLDDT( + self.asym[ch_name].residue(res_num), + self.plddts[i], + ) + ) + i += 1 + + +def _abort_msg(msg, exit_code=1): + """Write error message and exit with exit_code.""" + print(f"{msg}\nAborting.", file=sys.stderr) + sys.exit(exit_code) + + +def _warn_msg(msg): + """Write a warning message to stdout.""" + print(f"WARNING: {msg}") + + +def _check_file(file_path): + """Make sure a file exists and is actually a file.""" + if not os.path.exists(file_path): + _abort_msg(f"File not found: '{file_path}'.") + if not os.path.isfile(file_path): + _abort_msg(f"File path does not point to file: '{file_path}'.") + + +def _get_audit_authors(): + """Return the list of authors that produced this model.""" + return ( + "Correa Marrero, Miguel", + "Capdevielle, Sylvain", + "Huang, Weijie", + "Al-Subhi, Ali M.", + "Busscher, Marco", + "Busscher-Lange, Jacqueline", + "van der Wal, Froukje", + "de Ridder, Dick", + "van Dijk, Aalt D.J.", + "Hogenhout, Saskia A.", + "Immink, Richard", + ) + + +def _get_metadata(metadata_file): + """Read csv file with metedata and prepare for next steps.""" + metadata = pd.read_csv(metadata_file) + # make sure names (== PDB file names) are unique + assert len(set(metadata.Name)) == metadata.shape[0] + # columns: [Accession, Name] + return metadata + + +def _get_config(): + """Define AF setup.""" + description = "Model generated using AlphaFold (v2.2.0) producing 5 " \ + "monomer models with 3 recycles each, without model " \ + "relaxation, using templates (up to Aug. 4 2022), ranked " \ + "by pLDDT, starting from an MSA with reduced_dbs setting." + af_config = { + "model_preset": "monomer", + "db_preset": "reduced_dbs", + "max_template_date": "2022-08-04", + "run_relax": False, + } + return { + "af_config": af_config, + "af_version": "2.2.0", + "description": description, + "use_templates": True, + "use_small_bfd": True, + "use_multimer": False, + } + + +def _get_protocol_steps_and_software(config_data): + """Create the list of protocol steps with software and parameters used.""" + protocol = [] + + # modelling step + step = { + "method_type": "modeling", + "name": None, + "details": config_data["description"], + } + # get input data + # Must refer to data already in the JSON, so we try keywords + step["input"] = "target_sequences" + # get output data + # Must refer to existing data, so we try keywords + step["output"] = "model" + # get software + if config_data["use_multimer"]: + step["software"] = [{ + "name": "AlphaFold-Multimer", + "classification": "model building", + "description": "Structure prediction", + "citation": ihm.Citation( + pmid=None, + title="Protein complex prediction with " + + "AlphaFold-Multimer.", + journal="bioRxiv", + volume=None, + page_range=None, + year=2021, + authors=[ + "Evans, R.", + "O'Neill, M.", + "Pritzel, A.", + "Antropova, N.", + "Senior, A.", + "Green, T.", + "Zidek, A.", + "Bates, R.", + "Blackwell, S.", + "Yim, J.", + "Ronneberger, O.", + "Bodenstein, S.", + "Zielinski, M.", + "Bridgland, A.", + "Potapenko, A.", + "Cowie, A.", + "Tunyasuvunakool, K.", + "Jain, R.", + "Clancy, E.", + "Kohli, P.", + "Jumper, J.", + "Hassabis, D.", + ], + doi="10.1101/2021.10.04.463034", + ), + "location": "https://github.com/deepmind/alphafold", + "type": "package", + "version": config_data["af_version"], + }] + else: + step["software"] = [{ + "name": "AlphaFold", + "classification": "model building", + "description": "Structure prediction", + "citation": ihm.citations.alphafold2, + "location": "https://github.com/deepmind/alphafold", + "type": "package", + "version": config_data["af_version"], + }] + step["software_parameters"] = config_data["af_config"] + protocol.append(step) + + return protocol + + +def _get_title(prot_name): + """Get a title for this modelling experiment.""" + return f"AlphaFold2 model of Candidatus Phytoplasma ({prot_name})" + + +def _get_model_details(prot_name): + """Get the model description.""" + return f"The AlphaFold2 model of Candidatus Phytoplasma ({prot_name}) is " \ + f"part of a larger structural dataset. The complete dataset " \ + f"comprises AlphaFold2 models of 21 different phytoplasma " \ + f"effectors studied in a protein-protein interaction assay." + + +def _get_model_group_name(): + """Get a name for a model group.""" + return None + + +def _get_sequence(chn, use_auth=False): + """Get the sequence out of an OST chain incl. '-' for gaps in resnums.""" + # initialise (add gaps if first is not at num. 1) + lst_rn = _get_res_num(chn.residues[0], use_auth) + idx = 1 + sqe = "-" * (lst_rn - 1) \ + + chn.residues[0].one_letter_code + + for res in chn.residues[idx:]: + lst_rn += 1 + while lst_rn != _get_res_num(res, use_auth): + sqe += "-" + lst_rn += 1 + sqe += res.one_letter_code + return sqe + + +def _check_sequence(up_ac, sequence): + """Verify sequence to only contain standard olc.""" + ns_aa_pos = [] # positions of non-standard amino acids + for i, res in enumerate(sequence): + if res not in "ACDEFGHIKLMNPQRSTVWY": + if res == "U": + _warn_msg( + f"Selenocysteine found at position {i+1} of entry " + + f"'{up_ac}', this residue may be missing in the " + + "model." + ) + ns_aa_pos.append(i) + continue + raise RuntimeError( + "Non-standard aa found in UniProtKB sequence " + + f"for entry '{up_ac}': {res}, position {i+1}" + ) + return ns_aa_pos + + +def _get_n_parse_up_entry(up_ac, up_url): + """Get data for an UniProtKB entry and parse it.""" + # This is a simple parser for UniProtKB txt format, instead of breaking it + # up into multiple functions, we just allow many many branches & statements, + # here. + # pylint: disable=too-many-branches,too-many-statements + data = {} + data["up_organism"] = "" + data["up_sequence"] = "" + data["up_ac"] = up_ac + rspns = requests.get(up_url, timeout=180) + for line in rspns.iter_lines(decode_unicode=True): + if line.startswith("ID "): + sline = line.split() + if len(sline) != 5: + raise RuntimeError(f"Unusual UniProtKB ID line found:\n" \ + f"'{line}'") + data["up_id"] = sline[1] + elif line.startswith("OX NCBI_TaxID="): + # Following strictly the UniProtKB format: 'OX NCBI_TaxID=<ID>;' + data["up_ncbi_taxid"] = line[len("OX NCBI_TaxID=") : -1] + data["up_ncbi_taxid"] = data["up_ncbi_taxid"].split("{")[0].strip() + elif line.startswith("OS "): + if line[-1] == ".": + data["up_organism"] += line[len("OS ") : -1] + else: + data["up_organism"] += line[len("OS ") : -1] + " " + elif line.startswith("SQ "): + sline = line.split() + if len(sline) != 8: + raise RuntimeError(f"Unusual UniProtKB SQ line found:\n" \ + f"'{line}'") + data["up_seqlen"] = int(sline[2]) + data["up_crc64"] = sline[6] + elif line.startswith(" "): + sline = line.split() + if len(sline) > 6: + raise RuntimeError( + "Unusual UniProtKB sequence data line " + + f"found:\n'{line}'" + ) + data["up_sequence"] += "".join(sline) + elif line.startswith("RP "): + if "ISOFORM" in line.upper(): + raise RuntimeError( + f"First ISOFORM found for '{up_ac}', needs handling." + ) + elif line.startswith("DT "): + # 2012-10-03 + dt_flds = line[len("DT ") :].split(", ") + if dt_flds[1].upper().startswith("SEQUENCE VERSION "): + data["up_last_mod"] = datetime.datetime.strptime( + dt_flds[0], "%d-%b-%Y" + ) + elif dt_flds[1].upper().startswith("ENTRY VERSION "): + data["up_entry_version"] = dt_flds[1][len("ENTRY VERSION ") :] + if data["up_entry_version"][-1] == ".": + data["up_entry_version"] = data["up_entry_version"][:-1] + data["up_entry_version"] = int(data["up_entry_version"]) + elif line.startswith("GN Name="): + data["up_gn"] = line[len("GN Name=") :].split(";")[0] + data["up_gn"] = data["up_gn"].split("{")[0].strip() + + # we have not seen isoforms in the data set, yet, so we just set them to '.' + data["up_isoform"] = None + + # NOTE: no gene names in this set (use provided names instead) + # if "up_gn" not in data: + # _warn_msg( + # f"No gene name found for UniProtKB entry '{up_ac}', using " + # + "UniProtKB AC instead." + # ) + # data["up_gn"] = up_ac + if "up_last_mod" not in data: + raise RuntimeError(f"No sequence version found for UniProtKB entry " \ + f"'{up_ac}'.") + if "up_crc64" not in data: + raise RuntimeError(f"No CRC64 value found for UniProtKB entry " \ + f"'{up_ac}'.") + if len(data["up_sequence"]) == 0: + raise RuntimeError(f"No sequence found for UniProtKB entry '{up_ac}'.") + # check that sequence length and CRC64 is correct + if data["up_seqlen"] != len(data["up_sequence"]): + raise RuntimeError( + "Sequence length of SQ line and sequence data differ for " + + f"UniProtKB entry '{up_ac}': {data['up_seqlen']} != " + + f"{len(data['up_sequence'])}" + ) + data["up_ns_aa"] = _check_sequence(data["up_ac"], data["up_sequence"]) + + if "up_id" not in data: + raise RuntimeError(f"No ID found for UniProtKB entry '{up_ac}'.") + if "up_ncbi_taxid" not in data: + raise RuntimeError(f"No NCBI taxonomy ID found for UniProtKB entry " \ + f"'{up_ac}'.") + if len(data["up_organism"]) == 0: + raise RuntimeError(f"No organism species found for UniProtKB entry " \ + f"'{up_ac}'.") + return data + + +def _fetch_upkb_entry(up_ac): + """Get an UniProtKB entry.""" + return _get_n_parse_up_entry( + up_ac, f"https://rest.uniprot.org/uniprotkb/{up_ac}.txt" + ) + + +def _fetch_unisave_entry(up_ac, version): + """Get an UniSave entry, in contrast to an UniProtKB entry, that allows us + to specify a version.""" + return _get_n_parse_up_entry( + up_ac, + f"https://rest.uniprot.org/unisave/{up_ac}?format=txt&" + + f"versions={version}", + ) + + +def _cmp_sequences(mdl, upkb, ns_aa_pos, deletion_mismatches=True): + """Compare sequence while paying attention on non-standard amino acids. + Returns list of mismatches (up_pos, olc_up, olc_mdl) and covered UP range. + UniProt positions and ranges are 1-indexed. + Negative "up_pos" relates to (1-indexed) pos. in model for added residues. + If deletion_mismatches is True, res. in UP seq. but not in mdl within UP + range are counted as mismatches (N/C-terminal ones are never counted). + """ + # We add a U to the sequence when necessary. AF2 does not model it. The PDB + # has selenocysteine as canonical aa, see PDB entry 7Z0T. + for pos in ns_aa_pos: + if mdl[pos] != "-": + _abort_msg( + f"Position {pos+1} of non-canonical amino acid should be " + "a gap!" + ) + mdl = mdl[0:pos] + "U" + mdl[pos + 1 :] + if mdl == upkb: + mismatches = [] + up_range = (1, len(mdl)) + else: + # align and report mismatches + up_seq = seq.CreateSequence("UP", upkb) + ch_seq = seq.CreateSequence("CH", mdl) + aln = seq.alg.SemiGlobalAlign(up_seq, ch_seq, seq.alg.BLOSUM62)[0] + # get range and mismatches + aligned_indices = [i for i, c in enumerate(aln) \ + if c[0] != '-' and c[1] != '-'] + up_range = ( + aln.GetResidueIndex(0, aligned_indices[0]) + 1, + aln.GetResidueIndex(0, aligned_indices[-1]) + 1, + ) + mismatches = [] + for idx, (olc_up, olc_mdl) in enumerate(aln): + if olc_up != olc_mdl: + # mismatches are either extra res. in mdl/UP or mismatch + if olc_up == '-': + up_pos = -(aln.GetResidueIndex(1, idx) + 1) + else: + up_pos = aln.GetResidueIndex(0, idx) + 1 + # ignore if out of UP range + if up_pos < up_range[0] or up_pos > up_range[1]: + continue + # optionally ignore extra res. in UP also otherwise + if not deletion_mismatches and olc_mdl == '-': + continue + mismatches.append((up_pos, olc_up, olc_mdl)) + return mismatches, up_range + + +def _get_upkb_for_sequence(sqe, up_ac, up_version=None): + """Get UniProtKB entry data for given sequence. + If up_version given, we start from historical data in unisave. + Returns best possible hit (i.e. fewest mismatches between sqe and UP seq.) + as dict. with parsed UP data (see _get_n_parse_up_entry) with range covered + and mismatches (see _cmp_sequences) added as "up_range" and "mismatches". + """ + if up_version is None: + up_data = _fetch_upkb_entry(up_ac) + else: + up_data = _fetch_unisave_entry(up_ac, up_version) + min_up_data = None + while True: + mismatches, up_range = _cmp_sequences(sqe, up_data["up_sequence"], + up_data["up_ns_aa"]) + if min_up_data is None or \ + len(mismatches) < len(min_up_data["mismatches"]): + min_up_data = up_data + min_up_data["mismatches"] = mismatches + min_up_data["up_range"] = up_range + if len(mismatches) == 0: + # found hit; done + break + # fetch next one (skip if exceptions happen) + next_v = up_data["up_entry_version"] - 1 + while next_v > 0: + try: + # note: can fail to parse very old UP versions... + up_data = _fetch_unisave_entry(up_ac, next_v) + # can move on if no exception happened + break + except RuntimeError as ex: + #_warn_msg(f"Error in parsing v{next_v} of {up_ac}:\n{ex}") + # try next one + next_v -= 1 + if next_v == 0: + # warn user about failure to find match and abort + min_mismatches = min_up_data["mismatches"] + msg = f"Sequences not equal from file: {sqe}, from UniProtKB: " \ + f"{min_up_data['up_sequence']} ({up_ac}), checked entire " \ + f"entry history and best match had following mismatches " \ + f"in v{min_up_data['up_entry_version']} (range " \ + f"{min_up_data['up_range']}): {min_up_data['mismatches']}." + _warn_msg(msg) + # raise RuntimeError(msg) + break + return min_up_data + + +def _get_entities(pdb_file, up_ac, prot_name): + """Gather data for the mmCIF (target) entities.""" + _check_file(pdb_file) + ost_ent = io.LoadPDB(pdb_file) + if ost_ent.chain_count != 1: + raise RuntimeError( + f"Unexpected oligomer in {pdb_file}" + ) + chn = ost_ent.chains[0] + sqe_no_gaps = "".join([res.one_letter_code for res in chn.residues]) + sqe_gaps = _get_sequence(chn) + if sqe_no_gaps != sqe_gaps: + raise RuntimeError(f"Sequence in {pdb_file} has gaps for chain " \ + f"{chn.name}") + + # map to entities + # special case: A0A1B3JKP4 is obsolete (there may be better ways to catch that) + if up_ac == "A0A1B3JKP4": + up_version = 10 + else: + up_version = None + upkb = _get_upkb_for_sequence(sqe_no_gaps, up_ac, up_version) + description = f"Candidatus Phytoplasma ({prot_name})" + if len(upkb["mismatches"]) != 0: + description += " (sequence mismatches due to sequencing from experimental assay)" + cif_ent = { + "seqres": sqe_no_gaps, + "pdb_sequence": sqe_no_gaps, + "pdb_chain_id": [_get_ch_name(chn, False)], + "prot_name": prot_name, + "description": description + } + cif_ent.update(upkb) + + return [cif_ent], ost_ent + + +def _get_modelcif_entities(target_ents, asym_units, system): + """Create ModelCIF entities and asymmetric units.""" + for cif_ent in target_ents: + mdlcif_ent = modelcif.Entity( + # NOTE: sequence here defines residues in model! + cif_ent["seqres"], + description=cif_ent["description"], + source=ihm.source.Natural( + ncbi_taxonomy_id=cif_ent["up_ncbi_taxid"], + scientific_name=cif_ent["up_organism"], + ), + references=[ + modelcif.reference.UniProt( + cif_ent["up_id"], + cif_ent["up_ac"], + align_begin=cif_ent["up_range"][0], + align_end=cif_ent["up_range"][1], + isoform=cif_ent["up_isoform"], + ncbi_taxonomy_id=cif_ent["up_ncbi_taxid"], + organism_scientific=cif_ent["up_organism"], + sequence_version_date=cif_ent["up_last_mod"], + sequence_crc64=cif_ent["up_crc64"], + ) + ], + ) + # NOTE: this assigns (potentially new) alphabetic chain names + for pdb_chain_id in cif_ent["pdb_chain_id"]: + asym_units[pdb_chain_id] = modelcif.AsymUnit( + mdlcif_ent, strand_id=pdb_chain_id, + ) + system.target_entities.append(mdlcif_ent) + + +def _assemble_modelcif_software(soft_dict): + """Create a modelcif.Software instance from dictionary.""" + return modelcif.Software( + soft_dict["name"], + soft_dict["classification"], + soft_dict["description"], + soft_dict["location"], + soft_dict["type"], + soft_dict["version"], + citation=soft_dict["citation"], + ) + + +def _get_sequence_dbs(config_data): + """Get AF seq. DBs.""" + # hard coded UniProt release (see https://www.uniprot.org/release-notes) + # (TO BE UPDATED FOR EVERY DEPOSITION!) + up_version = "2021_04" + up_rel_date = datetime.datetime(2021, 11, 17) + # fill list of DBs + seq_dbs = [] + if config_data["use_small_bfd"]: + seq_dbs.append(modelcif.ReferenceDatabase( + "Reduced BFD", + "https://storage.googleapis.com/alphafold-databases/" + + "reduced_dbs/bfd-first_non_consensus_sequences.fasta.gz" + )) + else: + seq_dbs.append(modelcif.ReferenceDatabase( + "BFD", + "https://storage.googleapis.com/alphafold-databases/" + + "casp14_versions/" + + "bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt.tar.gz", + version="6a634dc6eb105c2e9b4cba7bbae93412", + )) + if config_data["af_version"] < "2.3.0": + seq_dbs.append(modelcif.ReferenceDatabase( + "MGnify", + "https://storage.googleapis.com/alphafold-databases/" + + "casp14_versions/mgy_clusters_2018_12.fa.gz", + version="2018_12", + release_date=datetime.datetime(2018, 12, 6), + )) + seq_dbs.append(modelcif.ReferenceDatabase( + "Uniclust30", + "https://storage.googleapis.com/alphafold-databases/" + + "casp14_versions/uniclust30_2018_08_hhsuite.tar.gz", + version="2018_08", + release_date=None, + )) + else: + # NOTE: release date according to https://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2022_05/ + seq_dbs.append(modelcif.ReferenceDatabase( + "MGnify", + "https://storage.googleapis.com/alphafold-databases/" + + "v2.3/mgy_clusters_2022_05.fa.gz", + version="2022_05", + release_date=datetime.datetime(2022, 5, 6), + )) + seq_dbs.append(modelcif.ReferenceDatabase( + "UniRef30", + "https://storage.googleapis.com/alphafold-databases/" + + "v2.3/UniRef30_2021_03.tar.gz", + version="2021_03", + release_date=None, + )) + if config_data["use_multimer"]: + seq_dbs.append(modelcif.ReferenceDatabase( + "TrEMBL", + "ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_release/" + + "knowledgebase/complete/uniprot_trembl.fasta.gz", + version=up_version, + release_date=up_rel_date, + )) + seq_dbs.append(modelcif.ReferenceDatabase( + "Swiss-Prot", + "ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_release/" + + "knowledgebase/complete/uniprot_sprot.fasta.gz", + version=up_version, + release_date=up_rel_date, + )) + seq_dbs.append(modelcif.ReferenceDatabase( + "UniRef90", + "ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/" + + "uniref90.fasta.gz", + version=up_version, + release_date=up_rel_date, + )) + if config_data["use_templates"]: + seq_dbs.append(modelcif.ReferenceDatabase( + "PDB70", + "http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/" + + "hhsuite_dbs/old-releases/pdb70_from_mmcif_200401.tar.gz", + release_date=datetime.datetime(2020, 4, 1) + )) + return seq_dbs + + +def _get_modelcif_protocol_software(js_step): + """Assemble software entries for a ModelCIF protocol step.""" + if js_step["software"]: + if len(js_step["software"]) == 1: + sftwre = _assemble_modelcif_software(js_step["software"][0]) + else: + sftwre = [] + for sft in js_step["software"]: + sftwre.append(_assemble_modelcif_software(sft)) + sftwre = modelcif.SoftwareGroup(elements=sftwre) + if js_step["software_parameters"]: + params = [] + for key, val in js_step["software_parameters"].items(): + params.append(modelcif.SoftwareParameter(key, val)) + if isinstance(sftwre, modelcif.SoftwareGroup): + sftwre.parameters = params + else: + sftwre = modelcif.SoftwareGroup( + elements=(sftwre,), parameters=params + ) + return sftwre + return None + + +def _get_modelcif_protocol_input(js_step, target_entities, ref_dbs, model): + """Assemble input data for a ModelCIF protocol step.""" + if js_step["input"] == "target_sequences": + input_data = modelcif.data.DataGroup(target_entities) + input_data.extend(ref_dbs) + elif js_step["input"] == "model": + input_data = model + else: + raise RuntimeError(f"Unknown protocol input: '{js_step['input']}'") + return input_data + + +def _get_modelcif_protocol_output(js_step, model): + """Assemble output data for a ModelCIF protocol step.""" + if js_step["output"] == "model": + output_data = model + else: + raise RuntimeError(f"Unknown protocol output: '{js_step['output']}'") + return output_data + + +def _get_modelcif_protocol(protocol_steps, target_entities, model, ref_dbs): + """Create the protocol for the ModelCIF file.""" + protocol = modelcif.protocol.Protocol() + for js_step in protocol_steps: + sftwre = _get_modelcif_protocol_software(js_step) + input_data = _get_modelcif_protocol_input( + js_step, target_entities, ref_dbs, model + ) + output_data = _get_modelcif_protocol_output(js_step, model) + + protocol.steps.append( + modelcif.protocol.Step( + input_data=input_data, + output_data=output_data, + name=js_step["name"], + details=js_step["details"], + software=sftwre, + ) + ) + protocol.steps[-1].method_type = js_step["method_type"] + return protocol + + +def _compress_cif_file(cif_file): + """Compress cif file and delete original.""" + with open(cif_file, 'rb') as f_in: + with gzip.open(cif_file + '.gz', 'wb') as f_out: + shutil.copyfileobj(f_in, f_out) + os.remove(cif_file) + + +def _store_as_modelcif(data_json, ost_ent, out_dir, mdl_name, compress): + """Mix all the data into a ModelCIF file.""" + print(" generating ModelCIF objects...", end="") + pstart = timer() + # create system to gather all the data + system = modelcif.System( + title=data_json["title"], + id=data_json["mdl_id"].upper(), + model_details=data_json["model_details"], + ) + + # create an asymmetric unit and an entity per target sequence + asym_units = {} + _get_modelcif_entities( + data_json["target_entities"], asym_units, system + ) + + # audit_authors + system.authors.extend(data_json["audit_authors"]) + + # set up the model to produce coordinates + model = _OST2ModelCIF( + assembly=modelcif.Assembly(asym_units.values()), + asym=asym_units, + ost_entity=ost_ent, + name="Top ranked model", + ) + print(f" ({timer()-pstart:.2f}s)") + print(" processing QA scores...", end="", flush=True) + pstart = timer() + model.add_scores() + print(f" ({timer()-pstart:.2f}s)") + + model_group = modelcif.model.ModelGroup( + [model], name=data_json["model_group_name"] + ) + system.model_groups.append(model_group) + + ref_dbs = _get_sequence_dbs(data_json["config_data"]) + protocol = _get_modelcif_protocol( + data_json["protocol"], system.target_entities, model, ref_dbs + ) + system.protocols.append(protocol) + + # write modelcif System to file (NOTE: no PAE here!) + print(" write to disk...", end="", flush=True) + pstart = timer() + out_path = os.path.join(out_dir, f"{mdl_name}.cif") + with open(out_path, "w", encoding="ascii") as mmcif_fh: + modelcif.dumper.write(mmcif_fh, [system]) + if compress: + _compress_cif_file(out_path) + print(f" ({timer()-pstart:.2f}s)") + + +def _translate2modelcif(up_ac, prot_name, opts): + """Convert a model with its accompanying data to ModelCIF.""" + mdl_id = prot_name + # skip if done already (disabled here due to info to be returned) + if opts.compress: + cifext = "cif.gz" + else: + cifext = "cif" + mdl_path = os.path.join(opts.out_dir, f"{mdl_id}.{cifext}") + # if os.path.exists(mdl_path): + # print(f" {mdl_id} already done...") + # return + + # go for it... + print(f" translating {mdl_id}...") + pdb_start = timer() + + # gather data into JSON-like structure + print(" preparing data...", end="") + pstart = timer() + + # now we can fill all data + config_data = _get_config() + mdlcf_json = {} + mdlcf_json["audit_authors"] = _get_audit_authors() + mdlcf_json["protocol"] = _get_protocol_steps_and_software(config_data) + mdlcf_json["config_data"] = config_data + mdlcf_json["mdl_id"] = mdl_id + + # process coordinates + pdb_file = os.path.join(opts.model_dir, f"{prot_name}.pdb") + target_entities, ost_ent = _get_entities(pdb_file, up_ac, prot_name) + mdlcf_json["target_entities"] = target_entities + + # fill annotations + mdlcf_json["title"] = _get_title(prot_name) + mdlcf_json["model_details"] = _get_model_details(prot_name) + mdlcf_json["model_group_name"] = _get_model_group_name() + print(f" ({timer()-pstart:.2f}s)") + + # save ModelCIF + _store_as_modelcif(mdlcf_json, ost_ent, opts.out_dir, mdl_id, opts.compress) + + # check if result can be read and has expected seq. + ent = io.LoadMMCIF(mdl_path) + exp_seqs = [trg_ent["pdb_sequence"] \ + for trg_ent in mdlcf_json["target_entities"]] + assert ent.chain_count == len(exp_seqs), f"Bad chain count {mdl_id}" + ent_seq = "".join(res.one_letter_code for res in ent.residues) + assert ent_seq == "".join(exp_seqs), f"Bad seq. {mdl_id}" + + print(f" ... done with {mdl_id} ({timer()-pdb_start:.2f}s).") + + +def _main(): + """Run as script.""" + opts = _parse_args() + + # parse/fetch global data + metadata = _get_metadata(opts.metadata_file) + + # get on with models + print(f"Working on {opts.metadata_file}...") + + # iterate over models + for _, mrow in metadata.iterrows(): + up_ac = mrow.Accession.strip() + prot_name = mrow.Name.strip() + _translate2modelcif(up_ac, prot_name, opts) + + print(f"... done with {opts.metadata_file}.") + + +if __name__ == "__main__": + _main()