diff --git a/projects/novelfams/translate2modelcif.py b/projects/novelfams/translate2modelcif.py
new file mode 100644
index 0000000000000000000000000000000000000000..9c3f5f80a3e64e3d8057f42311c7cd3c15bb8b8f
--- /dev/null
+++ b/projects/novelfams/translate2modelcif.py
@@ -0,0 +1,1254 @@
+#! /usr/local/bin/ost
+# -*- coding: utf-8 -*-
+"""Translate models for novelfams from PDB + extra data into ModelCIF."""
+# re-enable Pylint for final version
+# pylint: disable=too-many-lines
+
+from timeit import default_timer as timer
+import argparse
+import filecmp
+import gzip
+import os
+import shutil
+import sys
+import zipfile
+
+import pandas as pd
+import numpy as np
+
+import ihm
+import ihm.citations
+import modelcif
+import modelcif.associated
+import modelcif.dumper
+import modelcif.model
+import modelcif.protocol
+import modelcif.reference
+
+# pylint: disable=unused-import,wrong-import-order
+from ost import io, geom, mol
+
+# pylint: enable=unused-import,wrong-import-order
+
+
+# EXAMPLE for running:
+# ost translate2modelcif.py ...
+
+
+################################################################################
+# HELPERS (mostly copied from from ost/modules/io/tests/test_io_omf.py)
+# to compare PDBs
+def _compare_atoms(
+    a1, a2, occupancy_thresh=0.01, bfactor_thresh=0.01, dist_thresh=0.001
+):
+    if abs(a1.occupancy - a2.occupancy) > occupancy_thresh:
+        return False
+    if abs(a1.b_factor - a2.b_factor) > bfactor_thresh:
+        return False
+    # modification: look at x,y,z spearately
+    if abs(a1.pos.x - a2.pos.x) > dist_thresh:
+        return False
+    if abs(a1.pos.y - a2.pos.y) > dist_thresh:
+        return False
+    if abs(a1.pos.z - a2.pos.z) > dist_thresh:
+        return False
+    if a1.is_hetatom != a2.is_hetatom:
+        return False
+    if a1.element != a2.element:
+        return False
+    return True
+
+
+def _compare_residues(
+    r1,
+    r2,
+    at_occupancy_thresh=0.01,
+    at_bfactor_thresh=0.01,
+    at_dist_thresh=0.001,
+    skip_ss=False,
+    skip_rnums=False,
+):
+    if r1.GetName() != r2.GetName():
+        return False
+    if skip_rnums is False:
+        if r1.GetNumber() != r2.GetNumber():
+            return False
+    if skip_ss is False:
+        if str(r1.GetSecStructure()) != str(r2.GetSecStructure()):
+            return False
+    if r1.one_letter_code != r2.one_letter_code:
+        return False
+    if r1.chem_type != r2.chem_type:
+        return False
+    if r1.chem_class != r2.chem_class:
+        return False
+    anames1 = [a.GetName() for a in r1.atoms]
+    anames2 = [a.GetName() for a in r2.atoms]
+    if sorted(anames1) != sorted(anames2):
+        return False
+    anames = anames1
+    for aname in anames:
+        a1 = r1.FindAtom(aname)
+        a2 = r2.FindAtom(aname)
+        if not _compare_atoms(
+            a1,
+            a2,
+            occupancy_thresh=at_occupancy_thresh,
+            bfactor_thresh=at_bfactor_thresh,
+            dist_thresh=at_dist_thresh,
+        ):
+            return False
+    return True
+
+
+def _compare_chains(
+    ch1,
+    ch2,
+    at_occupancy_thresh=0.01,
+    at_bfactor_thresh=0.01,
+    at_dist_thresh=0.001,
+    skip_ss=False,
+    skip_rnums=False,
+):
+    if len(ch1.residues) != len(ch2.residues):
+        return False
+    for r1, r2 in zip(ch1.residues, ch2.residues):
+        if not _compare_residues(
+            r1,
+            r2,
+            at_occupancy_thresh=at_occupancy_thresh,
+            at_bfactor_thresh=at_bfactor_thresh,
+            at_dist_thresh=at_dist_thresh,
+            skip_ss=skip_ss,
+            skip_rnums=skip_rnums,
+        ):
+            return False
+    return True
+
+
+def _compare_bonds(ent1, ent2):
+    bonds1 = list()
+    for b in ent1.bonds:
+        bond_partners = [str(b.first), str(b.second)]
+        bonds1.append([min(bond_partners), max(bond_partners), b.bond_order])
+    bonds2 = list()
+    for b in ent2.bonds:
+        bond_partners = [str(b.first), str(b.second)]
+        bonds2.append([min(bond_partners), max(bond_partners), b.bond_order])
+    return sorted(bonds1) == sorted(bonds2)
+
+
+def _compare_ent(
+    ent1,
+    ent2,
+    at_occupancy_thresh=0.01,
+    at_bfactor_thresh=0.01,
+    at_dist_thresh=0.001,
+    skip_ss=False,
+    skip_cnames=False,
+    skip_bonds=False,
+    skip_rnums=False,
+    bu_idx=None,
+):
+    if bu_idx is not None:
+        if ent1.GetName() + " " + str(bu_idx) != ent2.GetName():
+            return False
+    else:
+        if ent1.GetName() != ent2.GetName():
+            return False
+    chain_names_one = [ch.GetName() for ch in ent1.chains]
+    chain_names_two = [ch.GetName() for ch in ent2.chains]
+    if skip_cnames:
+        # only check whether we have the same number of chains
+        if len(chain_names_one) != len(chain_names_two):
+            return False
+    else:
+        if chain_names_one != chain_names_two:
+            return False
+    for ch1, ch2 in zip(ent1.chains, ent2.chains):
+        if not _compare_chains(
+            ch1,
+            ch2,
+            at_occupancy_thresh=at_occupancy_thresh,
+            at_bfactor_thresh=at_bfactor_thresh,
+            at_dist_thresh=at_dist_thresh,
+            skip_ss=skip_ss,
+            skip_rnums=skip_rnums,
+        ):
+            return False
+    if not skip_bonds:
+        if not _compare_bonds(ent1, ent2):
+            return False
+    return True
+
+
+def _compare_pdbs(f_name, f1, f2):
+    """Use atom-by-atom comparison on PDB files allowing num. errors."""
+    # first do simple file diff.
+    if filecmp.cmp(f1, f2):
+        return True
+    else:
+        ent1 = io.LoadPDB(f1)
+        ent2 = io.LoadPDB(f2)
+        # allow a bit more errors as input files can have rounding errors
+        if _compare_ent(ent1, ent2, 0.011, 0.011, 0.0011, True, False, True):
+            return True
+        else:
+            # check manually and give warning...
+            atom_names_1 = [a.qualified_name for a in ent1.atoms]
+            atom_names_2 = [a.qualified_name for a in ent2.atoms]
+            assert atom_names_1 == atom_names_2
+            b_diffs = [
+                abs(a1.b_factor - a2.b_factor)
+                for a1, a2 in zip(ent1.atoms, ent2.atoms)
+            ]
+            max_b_diff = max(b_diffs)
+            rmsd = mol.alg.CalculateRMSD(ent1.Select(""), ent2.Select(""))
+            _warn_msg(
+                f"PDB file mismatch web vs top-ranked for {f_name}: "
+                f"RMSD {rmsd:.3f}, max. b_factor diff {max_b_diff:.3f}"
+            )
+            return False
+
+
+################################################################################
+
+
+def _abort_msg(msg, exit_code=1):
+    """Write error message and exit with exit_code."""
+    print(f"{msg}\nAborting.", file=sys.stderr)
+    sys.exit(exit_code)
+
+
+def _warn_msg(msg):
+    """Write a warning message to stdout."""
+    print(f"WARNING: {msg}")
+
+
+def _check_file(file_path):
+    """Make sure a file exists and is actually a file."""
+    if not os.path.exists(file_path):
+        _abort_msg(f"File not found: '{file_path}'.")
+    if not os.path.isfile(file_path):
+        _abort_msg(f"File path does not point to file: '{file_path}'.")
+
+
+def _check_folder(dir_path):
+    """Make sure a file exists and is actually a file."""
+    if not os.path.exists(dir_path):
+        _abort_msg(f"Path not found: '{dir_path}'.")
+    if not os.path.isdir(dir_path):
+        _abort_msg(f"Path does not point to a directory: '{dir_path}'.")
+
+
+def _check_opts_folder(dir_path):
+    """Remove trailing '/' (return fixed one) and check if path valid."""
+    if dir_path.endswith("/"):
+        dir_path = dir_path[:-1]
+    _check_folder(dir_path)
+    return dir_path
+
+
+def _parse_args():
+    """Parse command line arguments."""
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.RawDescriptionHelpFormatter,
+        description=__doc__,
+    )
+
+    parser.add_argument(
+        "model_dir",
+        type=str,
+        metavar="<MODEL DIR>",
+        help='Directory with model PDBs named "{ID}_{mdl}.pdb" (with ID and '
+        + "mdl matching info in metadata).",
+    )
+    parser.add_argument(
+        "out_dir",
+        type=str,
+        metavar="<OUTPUT DIR>",
+        help="Path to directory to store results.",
+    )
+    parser.add_argument(
+        "--compress",
+        default=False,
+        action="store_true",
+        help="Compress ModelCIF file with gzip.",
+    )
+    opts = parser.parse_args()
+
+    # check input
+    opts.model_dir = _check_opts_folder(opts.model_dir)
+    # check out_dir
+    if opts.out_dir.endswith("/"):
+        opts.out_dir = opts.out_dir[:-1]
+    if not os.path.exists(opts.out_dir):
+        os.makedirs(opts.out_dir)
+    if not os.path.isdir(opts.out_dir):
+        _abort_msg(f"Path '{opts.out_dir}' does not point to a directory.")
+
+    return opts
+
+
+# pylint: disable=too-few-public-methods
+class _GlobalPTM(modelcif.qa_metric.Global, modelcif.qa_metric.PTM):
+    """Predicted accuracy according to the TM-score score in [0,1]"""
+
+    name = "pTM"
+    software = None
+
+
+class _GlobalPLDDT(modelcif.qa_metric.Global, modelcif.qa_metric.PLDDT):
+    """Predicted accuracy according to the CA-only lDDT in [0,100]"""
+
+    name = "pLDDT"
+    software = None
+
+
+class _LocalPLDDT(modelcif.qa_metric.Local, modelcif.qa_metric.PLDDT):
+    """Predicted accuracy according to the CA-only lDDT in [0,100]"""
+
+    name = "pLDDT"
+    software = None
+
+
+class _LocalPairwisePAE(
+    modelcif.qa_metric.LocalPairwise, modelcif.qa_metric.PAE
+):
+    """Predicted aligned error (in Angstroms)"""
+
+    name = "PAE"
+    software = None
+
+
+class _NmpfamsdbTrgRef(modelcif.reference.TargetReference):
+    """NMPFamsDB as target reference."""
+
+    name = "Other"
+    other_details = "NMPFamsDB"
+
+
+class _LPeptideAlphabetWithX(ihm.LPeptideAlphabet):
+    """Have the default amino acid alphabet plus 'X' for unknown residues."""
+
+    def __init__(self):
+        """Create the alphabet."""
+        super().__init__()
+        self._comps["X"] = self._comps["UNK"]
+
+
+# pylint: enable=too-few-public-methods
+
+
+def _get_res_num(r, use_auth=False):
+    """Get res. num. from auth. IDs if reading from mmCIF files."""
+    if use_auth:
+        return int(r.GetStringProp("pdb_auth_resnum"))
+    return r.number.num
+
+
+def _get_ch_name(ch, use_auth=False):
+    """Get chain name from auth. IDs if reading from mmCIF files."""
+    if use_auth:
+        return ch.GetStringProp("pdb_auth_chain_name")
+    return ch.name
+
+
+class _OST2ModelCIF(modelcif.model.AbInitioModel):
+    """Map OST entity elements to ihm.model"""
+
+    def __init__(self, *args, **kwargs):
+        """Initialise a model"""
+        for i in ["ost_entity", "asym", "scores_json"]:
+            if i not in kwargs:
+                raise TypeError(f"Required keyword argument '{i}' not found.")
+        self.ost_entity = kwargs.pop("ost_entity")
+        self.asym = kwargs.pop("asym")
+        self.scores_json = kwargs.pop("scores_json")
+
+        # use auth IDs for res. nums and chain names
+        self.use_auth = False
+        # what accuracy to use for PAE? (writer uses 3 anyway)
+        self.pae_digits = 3
+
+        # fetch plddts per residue
+        self.plddts = []
+        for res in self.ost_entity.residues:
+            b_factors = [a.b_factor for a in res.atoms]
+            assert len(set(b_factors)) == 1  # must all be equal!
+            self.plddts.append(b_factors[0])
+
+        super().__init__(*args, **kwargs)
+
+    def get_atoms(self):
+        # ToDo [internal]: Take B-factor out since its not a B-factor?
+        # NOTE: this assumes that _get_res_num maps residue to pos. in seqres
+        #       within asym
+        for atm in self.ost_entity.atoms:
+            yield modelcif.model.Atom(
+                asym_unit=self.asym[_get_ch_name(atm.chain, self.use_auth)],
+                seq_id=_get_res_num(atm.residue, self.use_auth),
+                atom_id=atm.name,
+                type_symbol=atm.element,
+                x=atm.pos[0],
+                y=atm.pos[1],
+                z=atm.pos[2],
+                het=atm.is_hetatom,
+                biso=atm.b_factor,
+                occupancy=atm.occupancy,
+            )
+
+    def add_scores(self):
+        """Add QA metrics from AF2 scores."""
+        # global scores
+        self.qa_metrics.extend(
+            (
+                _GlobalPLDDT(self.scores_json["plddt_global"]),
+                _GlobalPTM(self.scores_json["ptm"]),
+            )
+        )
+
+        # local scores
+        lpae = []
+        i = 0
+        for chn_i in self.ost_entity.chains:
+            ch_name = _get_ch_name(chn_i, self.use_auth)
+            for res_i in chn_i.residues:
+                # local pLDDT
+                res_num_i = _get_res_num(res_i, self.use_auth)
+                self.qa_metrics.append(
+                    _LocalPLDDT(
+                        self.asym[ch_name].residue(res_num_i),
+                        self.plddts[i],
+                    )
+                )
+                i += 1
+
+                # PAE needs to go by residue index as it also stores ones
+                # for missing residues (i.e. X)
+                if "pae" in self.scores_json:
+                    pae_i = self.scores_json["pae"][res_num_i - 1]
+                    for chn_j in self.ost_entity.chains:
+                        for res_j in chn_j.residues:
+                            res_num_j = _get_res_num(res_j, self.use_auth)
+                            pae_ij = pae_i[res_num_j - 1]
+                            lpae.append(
+                                _LocalPairwisePAE(
+                                    self.asym[chn_i.name].residue(res_num_i),
+                                    self.asym[chn_j.name].residue(res_num_j),
+                                    round(pae_ij, self.pae_digits),
+                                )
+                            )
+
+        self.qa_metrics.extend(lpae)
+
+
+def _get_audit_authors():
+    """Return the list of authors that produced this model."""
+    return (
+        "Pavlopoulos, Georgios A.",
+        "Baltoumas, Fotis A.",
+        "Liu, Sirui",
+        "Selvitopi, Oguz",
+        "Camargo, Antonio Pedro",
+        "Nayfach, Stephen",
+        "Azad, Ariful",
+        "Roux, Simon",
+        "Call, Lee",
+        "Ivanova, Natalia N.",
+        "Chen, I-Min",
+        "Paez-Espino, David",
+        "Karatzas, Evangelos",
+        "Novel Metagenome Protein Families Consortium",
+        "Iliopoulos, Ioannis",
+        "Konstantinidi, Konstantinos",
+        "Tiedje, James M.",
+        "Pett-Ridge, Jennifer",
+        "Baker, David",
+        "Visel, Axel",
+        "Ouzounis, Christos A.",
+        "Ovchinnikov, Sergey",
+        "Buluc, Aydin",
+        "Kyrpides, Nikos C.",
+    )
+
+
+def _get_metadata(metadata_file):
+    """Read csv file with metedata and prepare for next steps."""
+    metadata = pd.read_csv(
+        metadata_file, sep=" ", names=["ID", "mdl", "pTM", "pLDDT"]
+    )
+    return metadata
+
+
+def _get_pdb_files(model_dir):
+    """Collect PDB files from model_dir.
+
+    Returns a list of paths to PDB files.
+    """
+    pdb_files = [f for f in os.listdir(model_dir) if not f.startswith(".")]
+    pdb_paths = []
+    for f in pdb_files:
+        f_path = os.path.join(model_dir, f)
+        pdb_paths.append(f_path)
+
+    return pdb_paths
+
+
+def _get_config():
+    """Define AF setup."""
+    msa_description = (
+        'MSA created by calculating the central or "pivot" '
+        "sequence of each seed MSA, and refining each "
+        "alignment using that sequence as the guide."
+    )
+    mdl_description = (
+        "Model generated using AlphaFold (v2.0.0 with models "
+        "fine-tuned to return pTM weights) producing 5 models, "
+        "without model relaxation, without templates, ranked "
+        "by pLDDT, starting from a custom MSA."
+    )
+    af_config = {}
+    return {
+        "af_config": af_config,
+        "af_version": "2.0.0",
+        "mdl_description": mdl_description,
+        "msa_description": msa_description,
+        "use_templates": False,
+        "use_small_bfd": False,
+        "use_multimer": False,
+    }
+
+
+def _get_protocol_steps_and_software(config_data):
+    """Create the list of protocol steps with software and parameters used."""
+    protocol = []
+
+    # MSA step
+    step = {
+        "method_type": "coevolution MSA",
+        "name": None,
+        "details": config_data["msa_description"],
+    }
+    step["input"] = "target_sequences"
+    step["output"] = "MSA"
+    step["software"] = []
+    step["software_parameters"] = {}
+    protocol.append(step)
+
+    # modelling step
+    step = {
+        "method_type": "modeling",
+        "name": None,
+        "details": config_data["mdl_description"],
+    }
+    # get input data
+    # Must refer to data already in the JSON, so we try keywords
+    step["input"] = "target_sequences_and_MSA"
+    # get output data
+    # Must refer to existing data, so we try keywords
+    step["output"] = "model"
+    # get software
+    if config_data["use_multimer"]:
+        step["software"] = [
+            {
+                "name": "AlphaFold-Multimer",
+                "classification": "model building",
+                "description": "Structure prediction",
+                "citation": ihm.Citation(
+                    pmid=None,
+                    title="Protein complex prediction with "
+                    + "AlphaFold-Multimer.",
+                    journal="bioRxiv",
+                    volume=None,
+                    page_range=None,
+                    year=2021,
+                    authors=[
+                        "Evans, R.",
+                        "O'Neill, M.",
+                        "Pritzel, A.",
+                        "Antropova, N.",
+                        "Senior, A.",
+                        "Green, T.",
+                        "Zidek, A.",
+                        "Bates, R.",
+                        "Blackwell, S.",
+                        "Yim, J.",
+                        "Ronneberger, O.",
+                        "Bodenstein, S.",
+                        "Zielinski, M.",
+                        "Bridgland, A.",
+                        "Potapenko, A.",
+                        "Cowie, A.",
+                        "Tunyasuvunakool, K.",
+                        "Jain, R.",
+                        "Clancy, E.",
+                        "Kohli, P.",
+                        "Jumper, J.",
+                        "Hassabis, D.",
+                    ],
+                    doi="10.1101/2021.10.04.463034",
+                ),
+                "location": "https://github.com/deepmind/alphafold",
+                "type": "package",
+                "version": config_data["af_version"],
+            }
+        ]
+    else:
+        step["software"] = [
+            {
+                "name": "AlphaFold",
+                "classification": "model building",
+                "description": "Structure prediction",
+                "citation": ihm.citations.alphafold2,
+                "location": "https://github.com/deepmind/alphafold",
+                "type": "package",
+                "version": config_data["af_version"],
+            }
+        ]
+    step["software_parameters"] = config_data["af_config"]
+    protocol.append(step)
+
+    return protocol
+
+
+def _get_title(fam_name):
+    """Get a title for this modelling experiment."""
+    return f"AlphaFold model for NMPFamsDB Family {fam_name}"
+
+
+def _get_model_details(fam_name, max_pLDDT, max_pTM):
+    """Get the model description."""
+    db_url = f"https://bib.fleming.gr/NMPFamsDB/family?id={fam_name}"
+    return (
+        f'Model generated using AlphaFold (v2.0.0) for the "Representative '
+        f'Sequence" of NMPFamsDB Metagenome / Metatranscriptome Family '
+        f"{fam_name}.\n\nThe 5 produced models reached a max. global pLDDT of "
+        f"{round(max_pLDDT, 3)} and max. pTM of {round(max_pTM, 3)}.\n\n"
+        f"See {db_url} for additional details."
+    )
+
+
+def _get_model_group_name():
+    """Get a name for a model group."""
+    return None
+
+
+def _get_sequence(chn, use_auth=False):
+    """Get the sequence out of an OST chain incl. '-' for gaps in resnums."""
+    # initialise (add gaps if first is not at num. 1)
+    lst_rn = _get_res_num(chn.residues[0], use_auth)
+    idx = 1
+    sqe = "-" * (lst_rn - 1) + chn.residues[0].one_letter_code
+
+    for res in chn.residues[idx:]:
+        lst_rn += 1
+        while lst_rn != _get_res_num(res, use_auth):
+            sqe += "-"
+            lst_rn += 1
+        sqe += res.one_letter_code
+    return sqe
+
+
+def _get_entities(pdb_file, ref_seq, fam_name):
+    """Gather data for the mmCIF (target) entities."""
+    _check_file(pdb_file)
+
+    ost_ent = io.LoadPDB(pdb_file)
+    if ost_ent.chain_count != 1:
+        raise RuntimeError(f"Unexpected oligomer in {pdb_file}")
+    chn = ost_ent.chains[0]
+    sqe_gaps = _get_sequence(chn)
+
+    # NOTE: can have gaps to accommodate "X" in ref_seq
+    exp_seq = sqe_gaps.replace("-", "X")
+    len_diff = len(ref_seq.string) - len(exp_seq)
+    if len_diff > 0:
+        exp_seq += "X" * len_diff
+    if exp_seq != ref_seq.string:
+        raise RuntimeError(f"Sequence in {pdb_file} does not match ref_seq")
+
+    cif_ent = {
+        "seqres": ref_seq.string,
+        "pdb_sequence": sqe_gaps,
+        "pdb_chain_id": [_get_ch_name(chn, False)],
+        "fam_name": fam_name,
+        "description": "Representative Sequence of NMPFamsDB Family "
+        + f"{fam_name}",
+    }
+
+    return [cif_ent], ost_ent
+
+
+def _get_modelcif_entities(target_ents, asym_units, system):
+    """Create ModelCIF entities and asymmetric units."""
+    alphabet = _LPeptideAlphabetWithX()
+    for cif_ent in target_ents:
+        mdlcif_ent = modelcif.Entity(
+            # NOTE: sequence here defines residues in model!
+            cif_ent["seqres"],
+            alphabet=alphabet,
+            description=cif_ent["description"],
+            source=None,
+            references=[
+                _NmpfamsdbTrgRef(
+                    cif_ent["fam_name"],
+                    cif_ent["fam_name"],
+                    align_begin=1,
+                    align_end=len(cif_ent["seqres"]),
+                )
+            ],
+        )
+        # NOTE: this assigns (potentially new) alphabetic chain names
+        for pdb_chain_id in cif_ent["pdb_chain_id"]:
+            asym_units[pdb_chain_id] = modelcif.AsymUnit(
+                mdlcif_ent,
+                strand_id=pdb_chain_id,
+            )
+        system.target_entities.append(mdlcif_ent)
+
+
+def _get_assoc_pae_file(entry_id, mdl_name):
+    """Generate a associated file object to extract PAE to extra file."""
+    return modelcif.associated.LocalPairwiseQAScoresFile(
+        f"{mdl_name}_local_pairwise_qa.cif",
+        categories=["_ma_qa_metric_local_pairwise"],
+        copy_categories=["_ma_qa_metric"],
+        entry_id=entry_id,
+        entry_details="This file is an associated file consisting "
+        + "of local pairwise QA metrics. This is a partial mmCIF "
+        + "file and can be validated by merging with the main "
+        + "mmCIF file containing the model coordinates and other "
+        + "associated data.",
+        details="Predicted aligned error",
+    )
+
+
+def _get_aln_data():
+    """Generate Data object for ALN."""
+    aln_data = modelcif.data.Data("Custom MSA for modelling")
+    aln_data.data_content_type = "coevolution MSA"
+    return aln_data
+
+
+def _get_assoc_aln_file(fle_path):
+    """Generate a modelcif.associated.File object pointing to FASTA formatted
+    file containing MSA.
+    """
+    cfile = modelcif.associated.File(
+        fle_path,
+        details="Custom MSA for modelling",
+        data=_get_aln_data(),
+    )
+    cfile.file_format = "fasta"
+    cfile.file_content = "multiple sequence alignments"
+    return cfile
+
+
+def _get_associated_files(mdl_name, arc_files):
+    """Create entry for associated files."""
+    # package all into zip file
+    return modelcif.associated.Repository(
+        "",
+        [modelcif.associated.ZipFile(f"{mdl_name}.zip", files=arc_files)],
+    )
+    # NOTE: by convention MA expects zip file with same name as model-cif
+
+
+def _assemble_modelcif_software(soft_dict):
+    """Create a modelcif.Software instance from dictionary."""
+    return modelcif.Software(
+        soft_dict["name"],
+        soft_dict["classification"],
+        soft_dict["description"],
+        soft_dict["location"],
+        soft_dict["type"],
+        soft_dict["version"],
+        citation=soft_dict["citation"],
+    )
+
+
+def _get_modelcif_protocol_software(js_step):
+    """Assemble software entries for a ModelCIF protocol step."""
+    if js_step["software"]:
+        if len(js_step["software"]) == 1:
+            sftwre = _assemble_modelcif_software(js_step["software"][0])
+        else:
+            sftwre = []
+            for sft in js_step["software"]:
+                sftwre.append(_assemble_modelcif_software(sft))
+            sftwre = modelcif.SoftwareGroup(elements=sftwre)
+        if js_step["software_parameters"]:
+            params = []
+            for key, val in js_step["software_parameters"].items():
+                params.append(modelcif.SoftwareParameter(key, val))
+            if isinstance(sftwre, modelcif.SoftwareGroup):
+                sftwre.parameters = params
+            else:
+                sftwre = modelcif.SoftwareGroup(
+                    elements=(sftwre,), parameters=params
+                )
+        return sftwre
+    return None
+
+
+def _get_modelcif_protocol_data(data_label, target_entities, aln_data, model):
+    """Assemble data for a ModelCIF protocol step."""
+    if data_label == "target_sequences":
+        data = modelcif.data.DataGroup(target_entities)
+    elif data_label == "MSA":
+        data = aln_data
+    elif data_label == "target_sequences_and_MSA":
+        data = modelcif.data.DataGroup(target_entities)
+        data.append(aln_data)
+    elif data_label == "model":
+        data = model
+    else:
+        raise RuntimeError(f"Unknown protocol data: '{data_label}'")
+    return data
+
+
+def _get_modelcif_protocol(protocol_steps, target_entities, aln_data, model):
+    """Create the protocol for the ModelCIF file."""
+    protocol = modelcif.protocol.Protocol()
+    for js_step in protocol_steps:
+        sftwre = _get_modelcif_protocol_software(js_step)
+        input_data = _get_modelcif_protocol_data(
+            js_step["input"], target_entities, aln_data, model
+        )
+        output_data = _get_modelcif_protocol_data(
+            js_step["output"], target_entities, aln_data, model
+        )
+
+        protocol.steps.append(
+            modelcif.protocol.Step(
+                input_data=input_data,
+                output_data=output_data,
+                name=js_step["name"],
+                details=js_step["details"],
+                software=sftwre,
+            )
+        )
+        protocol.steps[-1].method_type = js_step["method_type"]
+    return protocol
+
+
+def _compress_cif_file(cif_file):
+    """Compress cif file and delete original."""
+    with open(cif_file, "rb") as f_in:
+        with gzip.open(cif_file + ".gz", "wb") as f_out:
+            shutil.copyfileobj(f_in, f_out)
+    os.remove(cif_file)
+
+
+def _package_associated_files(repo):
+    """Compress associated files into single zip file and delete original."""
+    # zip settings tested for good speed vs compression
+    for archive in repo.files:
+        with zipfile.ZipFile(archive.path, "w", zipfile.ZIP_BZIP2) as cif_zip:
+            for zfile in archive.files:
+                cif_zip.write(zfile.path, arcname=zfile.path)
+                os.remove(zfile.path)
+
+
+def _get_assoc_mdl_file(fle_path, data_json):
+    """Generate a modelcif.associated.File object that looks like a CIF file.
+    The dedicated CIFFile functionality in modelcif would also try to write it.
+    """
+    cfile = modelcif.associated.File(
+        fle_path,
+        details=f"#{data_json['mdl_rank']} ranked model; "
+        + f"pTM {round(data_json['ptm'], 3)}, "
+        + f"pLDDT {round(data_json['plddt_global'], 3)}",
+    )
+    cfile.file_format = "cif"
+    return cfile
+
+
+def _get_assoc_zip_file(fle_path, data_json):
+    """Create a modelcif.associated.File object that looks like a ZIP file.
+    This is NOT the archive ZIP file for the PAEs but to store that in the
+    ZIP archive of the selected model."""
+    zfile = modelcif.associated.File(
+        fle_path,
+        details="archive with multiple files for "
+        + f"#{data_json['mdl_rank']} ranked model",
+    )
+    zfile.file_format = "other"
+    return zfile
+
+
+def _store_as_modelcif(
+    data_json,
+    ost_ent,
+    out_dir,
+    mdl_name,
+    compress,
+    add_pae,
+    add_aln,
+    add_files,
+):
+    """Mix all the data into a ModelCIF file."""
+    print("    generating ModelCIF objects...", end="")
+    pstart = timer()
+    # create system to gather all the data
+    system = modelcif.System(
+        title=data_json["title"],
+        id=data_json["mdl_id"].upper(),
+        model_details=data_json["model_details"],
+    )
+
+    # add primary citation (not using from_pubmed_id to ensure that author names
+    # have no special chars)
+    system.citations.append(
+        ihm.Citation(
+            pmid="37821698",
+            title="Unraveling the functional dark matter through global "
+            + "metagenomics.",
+            journal="Nature",
+            volume=622,
+            page_range=(594, 602),
+            year=2023,
+            authors=[
+                "Pavlopoulos, G.A.",
+                "Baltoumas, F.A.",
+                "Liu, S.",
+                "Selvitopi, O.",
+                "Camargo, A.P.",
+                "Nayfach, S.",
+                "Azad, A.",
+                "Roux, S.",
+                "Call, L.",
+                "Ivanova, N.N.",
+                "Chen, I.M.",
+                "Paez-Espino, D.",
+                "Karatzas, E.",
+                "Iliopoulos, I.",
+                "Konstantinidis, K.",
+                "Tiedje, J.M.",
+                "Pett-Ridge, J.",
+                "Baker, D.",
+                "Visel, A.",
+                "Ouzounis, C.A.",
+                "Ovchinnikov, S.",
+                "Buluc, A.",
+                "Kyrpides, N.C.",
+            ],
+            doi="10.1038/s41586-023-06583-7",
+            is_primary=True,
+        )
+    )
+
+    # create an asymmetric unit and an entity per target sequence
+    asym_units = {}
+    _get_modelcif_entities(data_json["target_entities"], asym_units, system)
+
+    # audit_authors
+    system.authors.extend(data_json["audit_authors"])
+
+    # set up the model to produce coordinates
+    model = _OST2ModelCIF(
+        assembly=modelcif.Assembly(asym_units.values()),
+        asym=asym_units,
+        ost_entity=ost_ent,
+        scores_json=data_json,
+        name=data_json["mdl_name"],
+    )
+    print(f" ({timer()-pstart:.2f}s)")
+    print("    processing QA scores...", end="", flush=True)
+    pstart = timer()
+    model.add_scores()
+    print(f" ({timer()-pstart:.2f}s)")
+
+    model_group = modelcif.model.ModelGroup(
+        [model], name=data_json["model_group_name"]
+    )
+    system.model_groups.append(model_group)
+
+    # handle additional files
+    arc_files = []
+    if add_pae:
+        arc_files.append(_get_assoc_pae_file(system.id, mdl_name))
+    if add_aln:
+        aln_file = _get_assoc_aln_file(data_json["aln_file_name"])
+        arc_files.append(aln_file)
+        aln_data = aln_file.data
+    else:
+        aln_data = _get_aln_data()
+        aln_data.data_other_details = "MSA stored with parent entry"
+    arc_files.extend(add_files)
+    if arc_files:
+        system.repositories.append(_get_associated_files(mdl_name, arc_files))
+
+    # get data and steps
+    protocol = _get_modelcif_protocol(
+        data_json["protocol"],
+        system.target_entities,
+        aln_data,
+        model,
+    )
+    system.protocols.append(protocol)
+
+    # write modelcif System to file (NOTE: no PAE here!)
+    print("    write to disk...", end="", flush=True)
+    pstart = timer()
+    # copy aln file to compress them
+    if add_aln:
+        shutil.copyfile(
+            data_json["aln_file_path"],
+            os.path.join(out_dir, data_json["aln_file_name"]),
+        )
+    # NOTE: we change path and back while being exception-safe to handle zipfile
+    oldpwd = os.getcwd()
+    os.chdir(out_dir)
+    mdl_fle = f"{mdl_name}.cif"
+    try:
+        with open(mdl_fle, "w", encoding="ascii") as mmcif_fh:
+            modelcif.dumper.write(mmcif_fh, [system])
+        if arc_files:
+            _package_associated_files(system.repositories[0])
+        if compress:
+            _compress_cif_file(mdl_fle)
+            mdl_fle += ".gz"
+    finally:
+        os.chdir(oldpwd)
+    print(f" ({timer()-pstart:.2f}s)")
+    assoc_files = [_get_assoc_mdl_file(mdl_fle, data_json)]
+    if arc_files:
+        assoc_files.append(
+            _get_assoc_zip_file(
+                system.repositories[0].files[0].path, data_json
+            )
+        )
+    return assoc_files
+
+
+def _translate2modelcif_single(
+    f_name,
+    opts,
+    metadata,
+    pdb_files,
+    mdl_rank,
+    aln_file,
+    aln_path,
+    ref_seq,
+    mdl_details,
+    add_files=[],
+):
+    """Convert a single model with its accompanying data to ModelCIF."""
+    mdl_id = f_name
+    if mdl_rank > 1:
+        mdl_id += f"_rank_{mdl_rank}_{metadata.mdl}"
+
+    print(f"  translating {mdl_id}...")
+    pdb_start = timer()
+
+    # gather data into JSON-like structure
+    print("    preparing data...", end="")
+    pstart = timer()
+
+    config_data = _get_config()
+    mdlcf_json = {}
+    mdlcf_json["audit_authors"] = _get_audit_authors()
+    mdlcf_json["protocol"] = _get_protocol_steps_and_software(config_data)
+    mdlcf_json["config_data"] = config_data
+    mdlcf_json["mdl_id"] = mdl_id  # used for entry ID
+    mdlcf_json["mdl_rank"] = mdl_rank
+    mdlcf_json["aln_file_name"] = aln_file
+    mdlcf_json["aln_file_path"] = aln_path
+
+    # find model to process
+    pdb_list_sel = [f for f in pdb_files if metadata.mdl in f]
+    if len(pdb_list_sel) != 1:
+        # this should never happen
+        raise RuntimeError(
+            f"Multiple file matches found for {metadata.mdl} in {f_name}"
+        )
+    if mdl_rank == 1:
+        mdlcf_json["mdl_name"] = f"Top ranked model ({metadata.mdl})"
+    else:
+        mdlcf_json["mdl_name"] = f"#{mdl_rank} ranked model ({metadata.mdl})"
+
+    # process coordinates
+    pdb_file = pdb_list_sel[0]
+    target_entities, ost_ent = _get_entities(pdb_file, ref_seq, f_name)
+    mdlcf_json["target_entities"] = target_entities
+    # sanity check (only for top ranked model!)
+    if mdl_rank == 1 and opts.pdb_web_path is not None:
+        pdb_file_web = os.path.join(opts.pdb_web_path, f"{f_name}.pdb")
+        # warning handled in compare function...
+        _compare_pdbs(f_name, pdb_file, pdb_file_web)
+
+    # get scores for this entry
+    mdlcf_json["plddt_global"] = metadata.pLDDT
+    mdlcf_json["ptm"] = metadata.pTM
+    add_pae = mdl_rank == 1 or opts.all_pae
+    if add_pae:
+        pdb_basename = os.path.basename(pdb_file)
+        pae_basename = os.path.splitext(pdb_basename)[0] + ".txt.gz"
+        pae_file = os.path.join(opts.pae_dir, pae_basename)
+        _check_file(pae_file)
+        mdlcf_json["pae"] = np.loadtxt(pae_file)
+        exp_num_res = len(ref_seq.string)
+        if mdlcf_json["pae"].shape != (exp_num_res, exp_num_res):
+            raise RuntimeError(f"Unexpected PAE shape in {pae_file}")
+
+    # fill annotations
+    mdlcf_json["title"] = _get_title(f_name)
+    if mdl_rank != 1:
+        mdlcf_json["title"] += f" (#{mdl_rank} ranked model)"
+    mdlcf_json["model_details"] = mdl_details
+    mdlcf_json["model_group_name"] = _get_model_group_name()
+    print(f" ({timer()-pstart:.2f}s)")
+
+    # save ModelCIF
+    assoc_files = _store_as_modelcif(
+        mdlcf_json,
+        ost_ent,
+        opts.out_dir,
+        mdl_id,
+        opts.compress and mdl_rank == 1,
+        add_pae,
+        opts.all_msa or mdl_rank == 1,
+        add_files,
+    )
+
+    # check if result can be read and has expected seq.
+    mdl_path = os.path.join(opts.out_dir, assoc_files[0].path)
+    ent, ss = io.LoadMMCIF(mdl_path, seqres=True)
+    exp_seqs = [
+        trg_ent["pdb_sequence"] for trg_ent in mdlcf_json["target_entities"]
+    ]
+    assert ent.chain_count == len(exp_seqs), f"Bad chain count {mdl_id}"
+    # here we expect auth = label IDs
+    ent_seq = "".join([_get_sequence(chn, False) for chn in ent.chains])
+    ent_seq_a = "".join([_get_sequence(chn, True) for chn in ent.chains])
+    assert ent_seq == ent_seq_a
+    assert ent_seq == "".join(exp_seqs), f"Bad seq. {mdl_id}"
+    ent_seqres = "".join(
+        [ss.FindSequence(chn.name).string for chn in ent.chains]
+    )
+    exp_seqres = "".join(
+        [trg_ent["seqres"] for trg_ent in mdlcf_json["target_entities"]]
+    )
+    assert ent_seqres == exp_seqres, f"Bad seqres {mdl_id}"
+
+    print(f"  ... done with {mdl_id} ({timer()-pdb_start:.2f}s).")
+
+    return assoc_files
+
+
+def _translate2modelcif(f_name, opts, metadata_fam, pdb_files, ref_seq_check):
+    """Convert a family of models with their accompanying data to ModelCIF."""
+    # re-enable Pylint for final version
+    # pylint: disable=too-many-locals
+    # expected to have exactly 5 models per family
+    if len(metadata_fam) != 5:
+        raise RuntimeError(
+            f"Unexpected number of {len(metadata_fam)} models in "
+            f"metadata for family {f_name}."
+        )
+
+    # skip if done already
+    if opts.compress:
+        cifext = "cif.gz"
+    else:
+        cifext = "cif"
+    mdl_path = os.path.join(opts.out_dir, f"{f_name}.{cifext}")
+    if os.path.exists(mdl_path):
+        print(f"  {f_name} already done...")
+        return
+
+    # get aln_data and ref. seq. for this entry
+    aln_file = f"{f_name}.fasta"
+    aln_path = os.path.join(opts.msa_data_dir, aln_file)
+    # expected 11 extra families compared to web data but those don't have MSAs
+    # -> skipped for consistency and to keep code simple here
+    if not os.path.exists(aln_path):
+        _warn_msg(f"Missing MSA for {f_name}. Skipping...")
+        return
+
+    aln = io.LoadAlignment(
+        aln_path
+    )  # note: this checks that it's an actual MSA
+    ref_seq = aln.sequences[0]
+    if ref_seq_check is not None and ref_seq_check.string != ref_seq.string:
+        raise RuntimeError(f"Sequence mismatch for {f_name}")
+
+    # get global model details
+    mdl_details = _get_model_details(
+        f_name, metadata_fam.pLDDT.max(), metadata_fam.pTM.max()
+    )
+    # rank available models
+    metadata_sorted = metadata_fam.sort_values("pLDDT", ascending=False)
+    add_files = []
+    if opts.all_models:
+        for idx in range(1, 5):
+            assoc_files = _translate2modelcif_single(
+                f_name,
+                opts,
+                metadata_sorted.iloc[idx],
+                pdb_files,
+                idx + 1,
+                aln_file,
+                aln_path,
+                ref_seq,
+                mdl_details,
+            )
+            add_files.extend(assoc_files)
+    # process top ranked one
+    _translate2modelcif_single(
+        f_name,
+        opts,
+        metadata_sorted.iloc[0],
+        pdb_files,
+        1,
+        aln_file,
+        aln_path,
+        ref_seq,
+        mdl_details,
+        add_files,
+    )
+
+
+def _main():
+    """Run as script."""
+    s_tmstmp = timer()
+    opts = _parse_args()
+
+    # get a list of PDB files with the path to load them.
+    pdb_files = _get_pdb_files(opts.model_dir)
+    n_mdls = len(pdb_files)
+
+    # iterate over models
+    print(f"Processing {n_mdls} models.")
+    tmstmp = s_tmstmp
+    for f_name in sorted(pdb_files):
+        n_mdls -= 1
+        """
+        if f_name.startswith(opts.prefix):
+            _translate2modelcif(
+                f_name,
+                opts,
+                metadata_full[metadata_full.ID == f_name],
+                pdb_files_split[f_name],
+                refseqs.FindSequence(f_name) if refseqs is not None else None,
+            )
+        """
+        # report progress after a bit of time
+        if timer() - tmstmp > 60:
+            print(
+                f"... {n_mdls} models left after "
+                + f"{(timer() - s_tmstmp)/60:.2f}min, last seen: "
+                + f"{os.path.splitext(os.path.basename(f_name))[0]}"
+            )
+            tmstmp = timer()
+
+    print(
+        f"... done, {n_mdls} models left after "
+        + f"{(timer() - s_tmstmp)/60:.2f}min."
+    )
+
+
+if __name__ == "__main__":
+    _main()