Skip to content
Snippets Groups Projects
Select Git revision
  • 6e60b71df07234c329fcf448ec67e26e5d84d525
  • master default protected
  • develop protected
  • cmake_boost_refactor
  • ubuntu_ci
  • mmtf
  • non-orthogonal-maps
  • no_boost_filesystem
  • data_viewer
  • 2.11.1
  • 2.11.0
  • 2.10.0
  • 2.9.3
  • 2.9.2
  • 2.9.1
  • 2.9.0
  • 2.8.0
  • 2.7.0
  • 2.6.1
  • 2.6.0
  • 2.6.0-rc4
  • 2.6.0-rc3
  • 2.6.0-rc2
  • 2.6.0-rc
  • 2.5.0
  • 2.5.0-rc2
  • 2.5.0-rc
  • 2.4.0
  • 2.4.0-rc2
29 results

trajectory_viewer.py

Blame
  • trajectory_analysis.py 9.69 KiB
    """
    **This Module requires numpy**
    
    This module contains functions to analyze trajectories, mainly 
    similiraty measures baed on RMSDS and pairwise distances.
    
    Author: Niklaus Johner (niklaus.johner@unibas.ch)
    """
    
    import ost.mol.alg
    import ost.geom
    from ost import LogError
    import os
    
    def smooth(vec,n):
    #Function to smooth a vector or a list of floats
    #for each element it takes the average over itself and the
    #n elements on each side, so over (2n+1) elements
      try:
        vec2=vec.copy()
      except:
        vec2=vec[:]
      for i in range(n):
        v=0.0
        count=1.0
        v+=vec[i]
        for j in range(n):
          count+=1
          v+=vec[i+j+1]
        for j in range(i):
          count+=1
          v+=vec[i-(j+1)]
        vec2[i]=v/float(count)
      for i in range(1,n+1):
        v=0.0
        count=1.0
        v+=vec[-i]
        for j in range(n):
          count+=1
          v+=vec[-(i+j+1)]
        for j in range(i-1):
          count+=1
          v+=vec[-i+j+1]
        vec2[-i]=v/float(count)
      for i in range(n,len(vec2)-n):
        v=vec[i]
        for j in range(n):
          v+=vec[i+j+1]
          v+=vec[i-j-1]
        vec2[i]=v/float(2.*n+1.)
      return vec2
    
    
    """
    From here on the module needs numpy
    """
    
    def RMSD_Matrix_From_Traj(t,sele,first=0,last=-1,align=True,align_sele=None):
      """
      This function calculates a matrix M such that M[i,j] is the
      RMSD (calculated on **sele**) between frames i and j of the trajectory **t**
      aligned on sele.
    
      :param t: the trajectory
      :param sele: the selection used for alignment and RMSD calculation
      :param first: the first frame of t to be used
      :param last: the last frame of t to be used
      :type t: :class:`~ost.mol.CoordGroupHandle`
      :type sele: :class:`~ost.mol.EntityView`
      :type first: :class:`int`
      :type last: :class:`int`
    
      :return: Returns a numpy N\ :subscript:`frames`\ xN\ :subscript:`frames` matrix, 
       where N\ :subscript:`frames` is the number of frames.
      """
      if not align_sele:align_sele=sele
      try:
        import numpy as npy
        if last==-1:last=t.GetFrameCount()
        n_frames=last-first
        rmsd_matrix=npy.identity(n_frames)
        for i in range(n_frames):
          if align:
            t=ost.mol.alg.SuperposeFrames(t,align_sele,begin=first,end=last,ref=i)
            eh=t.GetEntity()
          t.CopyFrame(i)
          rmsd_matrix[i,:]=ost.mol.alg.AnalyzeRMSD(t,sele,sele)
          if i==0:
            last=last-first
            first=0
        return rmsd_matrix
      except ImportError:
        LogError("Function needs numpy, but I could not import it.")
        raise
    
    
    def PairwiseDistancesFromTraj(t,sele,first=0,last=-1,seq_sep=1):
      """
      This function calculates the distances between any pair of atoms in **sele**  
      with sequence separation larger than **seq_sep** from a trajectory **t**.
      It return a matrix containing one line for each atom pair and N\ :subscript:`frames` columns, where
      N\ :subscript:`frames` is the number of frames in the trajectory.
      
      :param t: the trajectory
      :param sele: the selection used to determine the atom pairs
      :param first: the first frame of t to be used
      :param last: the last frame of t to be used
      :param seq_sep: The minimal sequence separation between atom pairs
      :type t: :class:`~ost.mol.CoordGroupHandle`
      :type sele: :class:`~ost.mol.EntityView`
      :type first: :class:`int`
      :type last: :class:`int`
      :type seq_sep: :class:`int`
    
      :return: a numpy N\ :subscript:`pairs`\ xN\ :subscript:`frames` matrix.
      """
      try:
        import numpy as npy
        if last==-1:last=t.GetFrameCount()
        n_frames=last-first
        n_var=0
        for i,a1 in enumerate(sele.atoms):
          for j,a2 in enumerate(sele.atoms):
            if not j-i<seq_sep:n_var+=1
        #n_var=sele.GetAtomCount()
        #n_var=(n_var-1)*(n_var)/2.
        dist_matrix=npy.zeros(n_frames*n_var)
        dist_matrix=dist_matrix.reshape(n_var,n_frames)
        k=0
        for i,a1 in enumerate(sele.atoms):
          for j,a2 in enumerate(sele.atoms):
            if j-i<seq_sep:continue
            dist_matrix[k]=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
            k+=1
        return dist_matrix
      except ImportError:
        LogError("Function needs numpy, but I could not import it.")
        raise
        
    def DistanceMatrixFromPairwiseDistances(distances,p=2):
      """
      This function calculates an distance matrix M(N\ :subscript:`frames`\ xN\ :subscript:`frames`\ ) from
      the pairwise distances matrix D(N\ :subscript:`pairs`\ xN\ :subscript:`frames`\ ), where 
      N\ :subscript:`frames` is the number of frames in the trajectory
      and N\ :subscript:`pairs` the number of atom pairs.
      M[i,j] is the distance between frame i and frame j
      calculated as a p-norm of the differences in distances
      from the two frames (distance-RMSD for p=2).
    
      :param distances: a pairwise distance matrix as obtained from 
       :py:func:`~mol.alg.trajectory_analysis.PairwiseDistancesFromTraj`
      :param p: exponent used for the p-norm.
    
      :return: a numpy N\ :subscript:`frames`\ xN\ :subscript:`frames` matrix, where N\ :subscript:`frames`
       is the number of frames.
      """
      try:
        import numpy as npy
        n1=distances.shape[0]
        n2=distances.shape[1]
        dist_mat=npy.identity(n2)
        for i in range(n2):
          for j in range(n2):
            if j<=i:continue
            d=(((abs(distances[:,i]-distances[:,j])**p).sum())/float(n1))**(1./p)
            dist_mat[i,j]=d
            dist_mat[j,i]=d
        return dist_mat
      except ImportError:
        LogError("Function needs numpy, but I could not import it.")
        raise
    
    def DistRMSDFromTraj(t,sele,ref_sele,radius=7.0,average=False,seq_sep=4,first=0,last=-1):
      """
      This function calculates the distance RMSD from a trajectory.
      The distances selected for the calculation are all the distances
      between pair of atoms from residues that are at least **seq_sep** apart
      in the sequence and that are smaller than **radius** in **ref_sel**.
      The number and order of atoms in **ref_sele** and **sele** should be the same.
    
      :param t: the trajectory
      :param sele: the selection used to calculate the distance RMSD
      :param ref_sele: the reference selection used to determine the atom pairs and reference distances
      :param radius: the upper limit of distances in ref_sele considered for the calculation
      :param seq_sep: the minimal sequence separation between atom pairs considered for the calculation 
      :param average: use the average distance in the trajectory as reference instead of the distance obtained from ref_sele
      :param first: the first frame of t to be used
      :param last: the last frame of t to be used
      
      :type t: :class:`~ost.mol.CoordGroupHandle`
      :type sele: :class:`~ost.mol.EntityView`
      :type ref_sele: :class:`~ost.mol.EntityView`
      :type radius: :class:`float`
      :type average: :class:`bool`
      :type first: :class:`int`
      :type last: :class:`int`
      :type seq_sep: :class:`int`
    
      :return: a numpy vecor dist_rmsd(N\ :subscript:`frames`).  
      """
      if not sele.GetAtomCount()==ref_sele.GetAtomCount():
        print 'Not same number of atoms in the two views'
        return
      try:
        import numpy as npy
        if last==-1:last=t.GetFrameCount()
        n_frames=last-first
        dist_rmsd=npy.zeros(n_frames)
        pair_count=0.0
        for i,a1 in enumerate(ref_sele.atoms):
          for j,a2 in enumerate(ref_sele.atoms):
            if j<=i:continue
            r1=a1.GetResidue()
            c1=r1.GetChain()
            r2=a2.GetResidue()
            c2=r2.GetChain()      
            if c1==c2 and abs(r2.GetNumber().num-r1.GetNumber().num)<seq_sep:continue
            d=ost.geom.Distance(a1.pos,a2.pos)
            if d<radius:
              a3=sele.atoms[i]
              a4=sele.atoms[j]
              d_traj=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a3.GetHandle(),a4.GetHandle())[first:last]
              if average:d=npy.mean(d_traj)
              for k,el in enumerate(d_traj):
                dist_rmsd[k]+=(el-d)**2.0
              pair_count+=1.0
        return (dist_rmsd/float(pair_count))**0.5
      except ImportError:
        LogError("Function needs numpy, but I could not import it.")
        raise
        
    def AverageDistanceMatrixFromTraj(t,sele,first=0,last=-1):
      """
      This function calcultes the distance between each pair of atoms
      in **sele**, averaged over the trajectory **t**.
    
      :param t: the trajectory
      :param sele: the selection used to determine the atom pairs
      :param first: the first frame of t to be used
      :param last: the last frame of t to be used
      :type t: :class:`~ost.mol.CoordGroupHandle`
      :type sele: :class:`~ost.mol.EntityView`
      :type first: :class:`int`
      :type last: :class:`int`
    
      :return: a numpy N\ :subscript:`pairs`\ xN\ :subscript:`pairs` matrix, where N\ :subscript:`pairs`
       is the number of atom pairs in **sele**.
      """
      try:
        import numpy as npy
      except ImportError:
        LogError("Function needs numpy, but I could not import it.")
        raise
      n_atoms=sele.GetAtomCount()
      M=npy.zeros([n_atoms,n_atoms])
      for i,a1 in enumerate(sele.atoms):
        for j,a2 in enumerate(sele.atoms):
          if j>i:continue
          d=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
          M[i,j]=npy.mean(d)
          M[j,i]=npy.mean(d)
      return M
    
    def AnalyzeDistanceFluctuationMatrix(t,sele,first=0,last=-1):
      try:
        import numpy as npy
      except ImportError:
        LogError("Function needs numpy, but I could not import it.")
        raise
      n_atoms=sele.GetAtomCount()
      M=npy.zeros([n_atoms,n_atoms])
      for i,a1 in enumerate(sele.atoms):
        for j,a2 in enumerate(sele.atoms):
          if i>j:continue
          d=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
          M[j,i]=npy.std(d)
          M[i,j]=npy.std(d)
      return M
      
    def IterativeSuperposition(t,sele,threshold=1.0,initial_sele=None,iterations=5,ref_frame=0):
      if initial_sele:current_sele=initial_sele
      else: current_sele=sele
      for i in range(iterations):
        t=ost.mol.alg.SuperposeFrames(t,current_sele,ref=ref_frame)
        al=[a for a in sele.atoms if ost.mol.alg.AnalyzeRMSF(t,ost.mol.CreateViewFromAtoms([a]))<threshold]
        if len(al)==0:return
        current_sele=ost.mol.CreateViewFromAtoms(al)
      return current_sele