diff --git a/website/raw/docs/tut/vecmath.mkdown b/website/raw/docs/tut/vecmath.mkdown index 112b9bcb340a655fa2c6f0d9f4e01603fedd8e21..d4bf338a978776f31f7c892574501837b6d82c61 100644 --- a/website/raw/docs/tut/vecmath.mkdown +++ b/website/raw/docs/tut/vecmath.mkdown @@ -25,10 +25,10 @@ Here is another example: # array subscript notation: c=geom.Vec2(a[0],b[1]) # print length of vector a and b - print Length(a), Length(b) + print geom.Length(a), geom.Length(b) # calculate dot (inner) product - print Dot(a,b) + print geom.Dot(a,b) # do some fancy calculation d = a+2*b @@ -44,7 +44,7 @@ Here are examples of both approaches: :::python # the standard python math module defines the pi constant and the acos function import math - angle= math.acos(Normalize(c),Normalize(d))*180.0/math.pi + angle= math.acos(geom.Normalize(c),geom.Normalize(d))*180.0/math.pi # computing the angle using the geom.Angle function angle2=geom.Angle(c,d)