import itertools import numpy as np import time from ost import mol from ost import geom from ost import io class ContactEntity: """ Helper object for Contact-score computation """ def __init__(self, ent, contact_d = 5.0, contact_mode="aa"): if contact_mode not in ["aa", "repr"]: raise RuntimeError("contact_mode must be in [\"aa\", \"repr\"]") if contact_mode == "repr": for r in ent.residues: repr_at = None if r.IsPeptideLinking(): cb = r.FindAtom("CB") if cb.IsValid(): repr_at = cb elif r.GetName() == "GLY": ca = r.FindAtom("CA") if ca.IsValid(): repr_at = ca elif r.IsNucleotideLinking(): c3 = r.FindAtom("C3'") if c3.IsValid(): repr_at = c3 else: raise RuntimeError(f"Only support peptide and nucleotide " f"residues in \"repr\" contact mode. " f"Problematic residue: {r}") if repr_at is None: raise RuntimeError(f"Residue {r} has no required " f"representative atom (CB for peptide " f"residues (CA for GLY) C3' for " f"nucleotide residues.") self._contact_mode = contact_mode if self.contact_mode == "aa": self._view = ent.CreateFullView() elif self.contact_mode == "repr": pep_query = "(peptide=true and (aname=\"CB\" or (rname=\"GLY\" and aname=\"CA\")))" nuc_query = "(nucleotide=True and aname=\"C3'\")" self._view = ent.Select(" or ".join([pep_query, nuc_query])) self._contact_d = contact_d # the following attributes will be lazily evaluated self._chain_names = None self._interacting_chains = None self._sequence = dict() self._contacts = None self._hr_contacts = None self._interface_residues = None self._hr_interface_residues = None @property def view(self): """ The structure depending on *contact_mode* Full view in case of "aa", view that only contains representative atoms in case of "repr". :type: :class:`ost.mol.EntityView` """ return self._view @property def contact_mode(self): """ The contact mode Can either be "aa", meaning that all atoms are considered to identify contacts, or "repr" which only considers distances between representative atoms. For peptides thats CB (CA for GLY), for nucleotides thats C3'. :type: :class:`str` """ return self._contact_mode @property def contact_d(self): """ Pairwise distance of residues to be considered as contacts Given at :class:`ContactScorer` construction :type: :class:`float` """ return self._contact_d @property def chain_names(self): """ Chain names in :attr:`~view` Names are sorted :type: :class:`list` of :class:`str` """ if self._chain_names is None: self._chain_names = sorted([ch.name for ch in self.view.chains]) return self._chain_names @property def interacting_chains(self): """ Pairs of chains in :attr:`~view` with at least one contact :type: :class:`list` of :class:`tuples` """ if self._interacting_chains is None: self._interacting_chains = list(self.contacts.keys()) return self._interacting_chains @property def contacts(self): """ Interchain contacts Organized as :class:`dict` with key (cname1, cname2) and values being a set of tuples with the respective residue indices. cname1 < cname2 evaluates to True. """ if self._contacts is None: self._SetupContacts() return self._contacts @property def hr_contacts(self): """ Human readable interchain contacts Human readable version of :attr:`~contacts`. Simple list with tuples containing two strings specifying the residues in contact. Format: <cname>.<rnum>.<ins_code> """ if self._hr_contacts is None: self._SetupContacts() return self._hr_contacts @property def interface_residues(self): """ Interface residues Residues in each chain that are in contact with any other chain. Organized as :class:`dict` with key cname and values the respective residue indices in a :class:`set`. """ if self._interface_residues is None: self._SetupInterfaceResidues() return self._interface_residues @property def hr_interface_residues(self): """ Human readable interface residues Human readable version of :attr:`interface_residues`. :class:`list` of strings specifying the interface residues in format: <cname>.<rnum>.<ins_code> """ if self._interface_residues is None: self._SetupHRInterfaceResidues() return self._hr_interface_residues def GetChain(self, chain_name): """ Get chain by name :param chain_name: Chain in :attr:`~view` :type chain_name: :class:`str` """ chain = self.view.FindChain(chain_name) if not chain.IsValid(): raise RuntimeError(f"view has no chain named \"{chain_name}\"") return chain def GetSequence(self, chain_name): """ Get sequence of chain Returns sequence of specified chain as raw :class:`str` :param chain_name: Chain in :attr:`~view` :type chain_name: :class:`str` """ if chain_name not in self._sequence: ch = self.GetChain(chain_name) s = ''.join([r.one_letter_code for r in ch.residues]) self._sequence[chain_name] = s return self._sequence[chain_name] def _SetupContacts(self): # this function is incredibly inefficient... if performance is an issue, # go ahead and optimize self._contacts = dict() self._hr_contacts = list() # set indices relative to full view for ch in self.view.chains: for r_idx, r in enumerate(ch.residues): r.SetIntProp("contact_idx", r_idx) for cname in self.chain_names: # q1 selects stuff in current chain that is close to any other chain q1 = f"cname={cname} and {self.contact_d} <> [cname!={cname}]" # q2 selects stuff in other chains that is close to current chain q2 = f"cname!={cname} and {self.contact_d} <> [cname={cname}]" v1 = self.view.Select(q1) v2 = self.view.Select(q2) v1_p = [geom.Vec3List([a.pos for a in r.atoms]) for r in v1.residues] for r1, p1 in zip(v1.residues, v1_p): for ch2 in v2.chains: cname2 = ch2.GetName() if cname2 > cname: v2_p = [geom.Vec3List([a.pos for a in r.atoms]) for r in ch2.residues] for r2, p2 in zip(ch2.residues, v2_p): if p1.IsWithin(p2, self.contact_d): cname_key = (cname, cname2) if cname_key not in self._contacts: self._contacts[cname_key] = set() self._contacts[cname_key].add((r1.GetIntProp("contact_idx"), r2.GetIntProp("contact_idx"))) rnum1 = r1.GetNumber() hr1 = f"{cname}.{rnum1.num}.{rnum1.ins_code}" rnum2 = r2.GetNumber() hr2 = f"{cname2}.{rnum2.num}.{rnum2.ins_code}" self._hr_contacts.append((hr1.strip("\u0000"), hr2.strip("\u0000"))) def _SetupInterfaceResidues(self): self._interface_residues = {cname: set() for cname in self.chain_names} for k,v in self.contacts.items(): for item in v: self._interface_residues[k[0]].add(item[0]) self._interface_residues[k[1]].add(item[1]) def _SetupHRInterfaceResidues(self): interface_residues = set() for item in self.hr_contacts: interface_residues.add(item[0]) interface_residues.add(item[1]) self._hr_interface_residues = list(interface_residues) class ContactScorerResultICS: """ Holds data relevant to compute ics """ def __init__(self, n_trg_contacts, n_mdl_contacts, n_union, n_intersection): self._n_trg_contacts = n_trg_contacts self._n_mdl_contacts = n_mdl_contacts self._n_union = n_union self._n_intersection = n_intersection @property def n_trg_contacts(self): """ Number of contacts in target :type: :class:`int` """ return self._n_trg_contacts @property def n_mdl_contacts(self): """ Number of contacts in model :type: :class:`int` """ return self._n_mdl_contacts @property def precision(self): """ Precision of model contacts The fraction of model contacts that are also present in target :type: :class:`int` """ if self._n_mdl_contacts != 0: return self._n_intersection / self._n_mdl_contacts else: return 0.0 @property def recall(self): """ Recall of model contacts The fraction of target contacts that are also present in model :type: :class:`int` """ if self._n_trg_contacts != 0: return self._n_intersection / self._n_trg_contacts else: return 0.0 @property def ics(self): """ The Interface Contact Similarity score (ICS) Combination of :attr:`precision` and :attr:`recall` using the F1-measure :type: :class:`float` """ p = self.precision r = self.recall nominator = p*r denominator = p + r if denominator != 0.0: return 2*nominator/denominator else: return 0.0 class ContactScorerResultIPS: """ Holds data relevant to compute ips """ def __init__(self, n_trg_int_res, n_mdl_int_res, n_union, n_intersection): self._n_trg_int_res = n_trg_int_res self._n_mdl_int_res = n_mdl_int_res self._n_union = n_union self._n_intersection = n_intersection @property def n_trg_int_res(self): """ Number of interface residues in target :type: :class:`int` """ return self._n_trg_contacts @property def n_mdl_int_res(self): """ Number of interface residues in model :type: :class:`int` """ return self._n_mdl_int_res @property def precision(self): """ Precision of model interface residues The fraction of model interface residues that are also interface residues in target :type: :class:`int` """ if self._n_mdl_int_res != 0: return self._n_intersection / self._n_mdl_int_res else: return 0.0 @property def recall(self): """ Recall of model interface residues The fraction of target interface residues that are also interface residues in model :type: :class:`int` """ if self._n_trg_int_res != 0: return self._n_intersection / self._n_trg_int_res else: return 0.0 @property def ips(self): """ The Interface Patch Similarity score (IPS) Jaccard coefficient of interface residues in model/target. Technically thats :attr:`intersection`/:attr:`union` :type: :class:`float` """ if(self._n_union > 0): return self._n_intersection/self._n_union return 0.0 class ContactScorer: """ Helper object to compute Contact scores Tightly integrated into the mechanisms from the chain_mapping module. The prefered way to derive an object of type :class:`ContactScorer` is through the static constructor: :func:`~FromMappingResult`. Usage is the same as for :class:`ost.mol.alg.QSScorer` """ def __init__(self, target, chem_groups, model, alns, contact_mode="aa", contact_d=5.0): self._cent1 = ContactEntity(target, contact_mode = contact_mode, contact_d = contact_d) # ensure that target chain names match the ones in chem_groups chem_group_ch_names = list(itertools.chain.from_iterable(chem_groups)) if self._cent1.chain_names != sorted(chem_group_ch_names): raise RuntimeError(f"Expect exact same chain names in chem_groups " f"and in target (which is processed to only " f"contain peptides/nucleotides). target: " f"{self._cent1.chain_names}, chem_groups: " f"{chem_group_ch_names}") self._chem_groups = chem_groups self._cent2 = ContactEntity(model, contact_mode = contact_mode, contact_d = contact_d) self._alns = alns # cache for mapped interface scores # key: tuple of tuple ((qsent1_ch1, qsent1_ch2), # ((qsent2_ch1, qsent2_ch2)) # value: tuple with four numbers required for computation of # per-interface scores. # The first two are relevant for ICS, the others for per # interface IPS. # 1: n_union_contacts # 2: n_intersection_contacts # 3: n_union_interface_residues # 4: n_intersection_interface_residues self._mapped_cache_interface = dict() # cache for mapped single chain scores # for interface residues of single chains # key: tuple: (qsent1_ch, qsent2_ch) # value: tuple with two numbers required for computation of IPS # 1: n_union # 2: n_intersection self._mapped_cache_sc = dict() @staticmethod def FromMappingResult(mapping_result, contact_mode="aa", contact_d = 5.0): """ The preferred way to get a :class:`ContactScorer` Static constructor that derives an object of type :class:`ContactScorer` using a :class:`ost.mol.alg.chain_mapping.MappingResult` :param mapping_result: Data source :type mapping_result: :class:`ost.mol.alg.chain_mapping.MappingResult` """ contact_scorer = ContactScorer(mapping_result.target, mapping_result.chem_groups, mapping_result.model, mapping_result.alns, contact_mode = contact_mode, contact_d = contact_d) return contact_scorer @property def cent1(self): """ Represents *target* :type: :class:`ContactEntity` """ return self._cent1 @property def chem_groups(self): """ Groups of chemically equivalent chains in *target* Provided at object construction :type: :class:`list` of :class:`list` of :class:`str` """ return self._chem_groups @property def cent2(self): """ Represents *model* :type: :class:`ContactEntity` """ return self._cent2 @property def alns(self): """ Alignments between chains in :attr:`~cent1` and :attr:`~cent2` Provided at object construction. Each alignment is accessible with ``alns[(t_chain,m_chain)]``. First sequence is the sequence of the respective chain in :attr:`~cent1`, second sequence the one from :attr:`~cent2`. :type: :class:`dict` with key: :class:`tuple` of :class:`str`, value: :class:`ost.seq.AlignmentHandle` """ return self._alns def ScoreICS(self, mapping, check=True): """ Computes ICS given chain mapping Again, the preferred way is to get *mapping* is from an object of type :class:`ost.mol.alg.chain_mapping.MappingResult`. :param mapping: see :attr:`ost.mol.alg.chain_mapping.MappingResult.mapping` :type mapping: :class:`list` of :class:`list` of :class:`str` :param check: Perform input checks, can be disabled for speed purposes if you know what you're doing. :type check: :class:`bool` :returns: Result object of type :class:`ContactScorerResultICS` """ if check: # ensure that dimensionality of mapping matches self.chem_groups if len(self.chem_groups) != len(mapping): raise RuntimeError("Dimensions of self.chem_groups and mapping " "must match") for a,b in zip(self.chem_groups, mapping): if len(a) != len(b): raise RuntimeError("Dimensions of self.chem_groups and " "mapping must match") # ensure that chain names in mapping are all present in cent2 for name in itertools.chain.from_iterable(mapping): if name is not None and name not in self.cent2.chain_names: raise RuntimeError(f"Each chain in mapping must be present " f"in self.cent2. No match for " f"\"{name}\"") flat_mapping = dict() for a, b in zip(self.chem_groups, mapping): flat_mapping.update({x: y for x, y in zip(a, b) if y is not None}) return self.ICSFromFlatMapping(flat_mapping) def ScoreICSInterface(self, trg_ch1, trg_ch2, mdl_ch1, mdl_ch2): """ Computes ICS scores only considering one interface This only works for interfaces that are computed in :func:`Score`, i.e. interfaces for which the alignments are set up correctly. :param trg_ch1: Name of first interface chain in target :type trg_ch1: :class:`str` :param trg_ch2: Name of second interface chain in target :type trg_ch2: :class:`str` :param mdl_ch1: Name of first interface chain in model :type mdl_ch1: :class:`str` :param mdl_ch2: Name of second interface chain in model :type mdl_ch2: :class:`str` :returns: Result object of type :class:`ContactScorerResultICS` :raises: :class:`RuntimeError` if no aln for trg_ch1/mdl_ch1 or trg_ch2/mdl_ch2 is available. """ if (trg_ch1, mdl_ch1) not in self.alns: raise RuntimeError(f"No aln between trg_ch1 ({trg_ch1}) and " f"mdl_ch1 ({mdl_ch1}) available. Did you " f"construct the QSScorer object from a " f"MappingResult and are trg_ch1 and mdl_ch1 " f"mapped to each other?") if (trg_ch2, mdl_ch2) not in self.alns: raise RuntimeError(f"No aln between trg_ch1 ({trg_ch1}) and " f"mdl_ch1 ({mdl_ch1}) available. Did you " f"construct the QSScorer object from a " f"MappingResult and are trg_ch1 and mdl_ch1 " f"mapped to each other?") trg_int = (trg_ch1, trg_ch2) mdl_int = (mdl_ch1, mdl_ch2) trg_int_r = (trg_ch2, trg_ch1) mdl_int_r = (mdl_ch2, mdl_ch1) if trg_int in self.cent1.contacts: n_trg = len(self.cent1.contacts[trg_int]) elif trg_int_r in self.cent1.contacts: n_trg = len(self.cent1.contacts[trg_int_r]) else: n_trg = 0 if mdl_int in self.cent2.contacts: n_mdl = len(self.cent2.contacts[mdl_int]) elif mdl_int_r in self.cent2.contacts: n_mdl = len(self.cent2.contacts[mdl_int_r]) else: n_mdl = 0 n_union, n_intersection, _, _ = self._MappedInterfaceScores(trg_int, mdl_int) return ContactScorerResultICS(n_trg, n_mdl, n_union, n_intersection) def ICSFromFlatMapping(self, flat_mapping): """ Same as :func:`ScoreICS` but with flat mapping :param flat_mapping: Dictionary with target chain names as keys and the mapped model chain names as value :type flat_mapping: :class:`dict` with :class:`str` as key and value :returns: Result object of type :class:`ContactScorerResultICS` """ n_trg = sum([len(x) for x in self.cent1.contacts.values()]) n_mdl = sum([len(x) for x in self.cent2.contacts.values()]) n_union = 0 n_intersection = 0 processed_cent2_interfaces = set() for int1 in self.cent1.interacting_chains: if int1[0] in flat_mapping and int1[1] in flat_mapping: int2 = (flat_mapping[int1[0]], flat_mapping[int1[1]]) a, b, _, _ = self._MappedInterfaceScores(int1, int2) n_union += a n_intersection += b processed_cent2_interfaces.add((min(int2), max(int2))) # process interfaces that only exist in qsent2 r_flat_mapping = {v:k for k,v in flat_mapping.items()} # reverse mapping for int2 in self.cent2.interacting_chains: if int2 not in processed_cent2_interfaces: if int2[0] in r_flat_mapping and int2[1] in r_flat_mapping: int1 = (r_flat_mapping[int2[0]], r_flat_mapping[int2[1]]) a, b, _, _ = self._MappedInterfaceScores(int1, int2) n_union += a n_intersection += b return ContactScorerResultICS(n_trg, n_mdl, n_union, n_intersection) def ScoreIPS(self, mapping, check=True): """ Computes IPS given chain mapping Again, the preferred way is to get *mapping* is from an object of type :class:`ost.mol.alg.chain_mapping.MappingResult`. :param mapping: see :attr:`ost.mol.alg.chain_mapping.MappingResult.mapping` :type mapping: :class:`list` of :class:`list` of :class:`str` :param check: Perform input checks, can be disabled for speed purposes if you know what you're doing. :type check: :class:`bool` :returns: Result object of type :class:`ContactScorerResultIPS` """ if check: # ensure that dimensionality of mapping matches self.chem_groups if len(self.chem_groups) != len(mapping): raise RuntimeError("Dimensions of self.chem_groups and mapping " "must match") for a,b in zip(self.chem_groups, mapping): if len(a) != len(b): raise RuntimeError("Dimensions of self.chem_groups and " "mapping must match") # ensure that chain names in mapping are all present in cent2 for name in itertools.chain.from_iterable(mapping): if name is not None and name not in self.cent2.chain_names: raise RuntimeError(f"Each chain in mapping must be present " f"in self.cent2. No match for " f"\"{name}\"") flat_mapping = dict() for a, b in zip(self.chem_groups, mapping): flat_mapping.update({x: y for x, y in zip(a, b) if y is not None}) return self.IPSFromFlatMapping(flat_mapping) def ScoreIPSInterface(self, trg_ch1, trg_ch2, mdl_ch1, mdl_ch2): """ Computes IPS scores only considering one interface This only works for interfaces that are computed in :func:`Score`, i.e. interfaces for which the alignments are set up correctly. :param trg_ch1: Name of first interface chain in target :type trg_ch1: :class:`str` :param trg_ch2: Name of second interface chain in target :type trg_ch2: :class:`str` :param mdl_ch1: Name of first interface chain in model :type mdl_ch1: :class:`str` :param mdl_ch2: Name of second interface chain in model :type mdl_ch2: :class:`str` :returns: Result object of type :class:`ContactScorerResultIPS` :raises: :class:`RuntimeError` if no aln for trg_ch1/mdl_ch1 or trg_ch2/mdl_ch2 is available. """ if (trg_ch1, mdl_ch1) not in self.alns: raise RuntimeError(f"No aln between trg_ch1 ({trg_ch1}) and " f"mdl_ch1 ({mdl_ch1}) available. Did you " f"construct the QSScorer object from a " f"MappingResult and are trg_ch1 and mdl_ch1 " f"mapped to each other?") if (trg_ch2, mdl_ch2) not in self.alns: raise RuntimeError(f"No aln between trg_ch1 ({trg_ch1}) and " f"mdl_ch1 ({mdl_ch1}) available. Did you " f"construct the QSScorer object from a " f"MappingResult and are trg_ch1 and mdl_ch1 " f"mapped to each other?") trg_int = (trg_ch1, trg_ch2) mdl_int = (mdl_ch1, mdl_ch2) trg_int_r = (trg_ch2, trg_ch1) mdl_int_r = (mdl_ch2, mdl_ch1) if trg_int in self.cent1.contacts: n_trg = len(self.cent1.contacts[trg_int]) elif trg_int_r in self.cent1.contacts: n_trg = len(self.cent1.contacts[trg_int_r]) else: n_trg = 0 if mdl_int in self.cent2.contacts: n_mdl = len(self.cent2.contacts[mdl_int]) elif mdl_int_r in self.cent2.contacts: n_mdl = len(self.cent2.contacts[mdl_int_r]) else: n_mdl = 0 _, _, n_union, n_intersection = self._MappedInterfaceScores(trg_int, mdl_int) return ContactScorerResultIPS(n_trg, n_mdl, n_union, n_intersection) def IPSFromFlatMapping(self, flat_mapping): """ Same as :func:`ScoreIPS` but with flat mapping :param flat_mapping: Dictionary with target chain names as keys and the mapped model chain names as value :type flat_mapping: :class:`dict` with :class:`str` as key and value :returns: Result object of type :class:`ContactScorerResultIPS` """ n_trg = sum([len(x) for x in self.cent1.interface_residues.values()]) n_mdl = sum([len(x) for x in self.cent2.interface_residues.values()]) n_union = 0 n_intersection = 0 processed_cent2_chains = set() for trg_ch in self.cent1.chain_names: if trg_ch in flat_mapping: a, b = self._MappedSCScores(trg_ch, flat_mapping[trg_ch]) n_union += a n_intersection += b processed_cent2_chains.add(flat_mapping[trg_ch]) else: n_union += len(self.cent1.interface_residues[trg_ch]) for mdl_ch in self._cent2.chain_names: if mdl_ch not in processed_cent2_chains: n_union += len(self.cent2.interface_residues[mdl_ch]) return ContactScorerResultIPS(n_trg, n_mdl, n_union, n_intersection) def _MappedInterfaceScores(self, int1, int2): key_one = (int1, int2) if key_one in self._mapped_cache_interface: return self._mapped_cache_interface[key_one] key_two = ((int1[1], int1[0]), (int2[1], int2[0])) if key_two in self._mapped_cache_interface: return self._mapped_cache_interface[key_two] a, b, c, d = self._InterfaceScores(int1, int2) self._mapped_cache_interface[key_one] = (a, b, c, d) return (a, b, c, d) def _InterfaceScores(self, int1, int2): if int1 in self.cent1.contacts: ref_contacts = self.cent1.contacts[int1] elif (int1[1], int1[0]) in self.cent1.contacts: ref_contacts = self.cent1.contacts[(int1[1], int1[0])] # need to reverse contacts ref_contacts = set([(x[1], x[0]) for x in ref_contacts]) else: ref_contacts = set() # no contacts at all if int2 in self.cent2.contacts: mdl_contacts = self.cent2.contacts[int2] elif (int2[1], int2[0]) in self.cent2.contacts: mdl_contacts = self.cent2.contacts[(int2[1], int2[0])] # need to reverse contacts mdl_contacts = set([(x[1], x[0]) for x in mdl_contacts]) else: mdl_contacts = set() # no contacts at all # indices in contacts lists are specific to the respective # structures, need manual mapping from alignments ch1_aln = self.alns[(int1[0], int2[0])] ch2_aln = self.alns[(int1[1], int2[1])] mapped_ref_contacts = set() mapped_mdl_contacts = set() for c in ref_contacts: mapped_c = (ch1_aln.GetPos(0, c[0]), ch2_aln.GetPos(0, c[1])) mapped_ref_contacts.add(mapped_c) for c in mdl_contacts: mapped_c = (ch1_aln.GetPos(1, c[0]), ch2_aln.GetPos(1, c[1])) mapped_mdl_contacts.add(mapped_c) contact_union = len(mapped_ref_contacts.union(mapped_mdl_contacts)) contact_intersection = len(mapped_ref_contacts.intersection(mapped_mdl_contacts)) # above, we computed the union and intersection on actual # contacts. Here, we do the same on interface residues # process interface residues of chain one in interface tmp_ref = set([x[0] for x in mapped_ref_contacts]) tmp_mdl = set([x[0] for x in mapped_mdl_contacts]) intres_union = len(tmp_ref.union(tmp_mdl)) intres_intersection = len(tmp_ref.intersection(tmp_mdl)) # process interface residues of chain two in interface tmp_ref = set([x[1] for x in mapped_ref_contacts]) tmp_mdl = set([x[1] for x in mapped_mdl_contacts]) intres_union += len(tmp_ref.union(tmp_mdl)) intres_intersection += len(tmp_ref.intersection(tmp_mdl)) return (contact_union, contact_intersection, intres_union, intres_intersection) def _MappedSCScores(self, ref_ch, mdl_ch): if (ref_ch, mdl_ch) in self._mapped_cache_sc: return self._mapped_cache_sc[(ref_ch, mdl_ch)] n_union, n_intersection = self._SCScores(ref_ch, mdl_ch) self._mapped_cache_sc[(ref_ch, mdl_ch)] = (n_union, n_intersection) return (n_union, n_intersection) def _SCScores(self, ch1, ch2): ref_int_res = self.cent1.interface_residues[ch1] mdl_int_res = self.cent2.interface_residues[ch2] aln = self.alns[(ch1, ch2)] mapped_ref_int_res = set() mapped_mdl_int_res = set() for r_idx in ref_int_res: mapped_ref_int_res.add(aln.GetPos(0, r_idx)) for r_idx in mdl_int_res: mapped_mdl_int_res.add(aln.GetPos(1, r_idx)) return(len(mapped_ref_int_res.union(mapped_mdl_int_res)), len(mapped_ref_int_res.intersection(mapped_mdl_int_res))) # specify public interface __all__ = ('ContactEntity', 'ContactScorerResultICS', 'ContactScorerResultIPS', 'ContactScorer')