""" Scoring of quaternary structures as in Martino's 2017 paper. .. note :: Requirements for use: - A default :class:`compound library <ost.conop.CompoundLib>` must be defined and accessible via :func:`~ost.conop.GetDefaultLib`. This is set by default when executing scripts with ``ost``. Otherwise, you must set this with :func:`~ost.conop.SetDefaultLib`. - ClustalW must be installed (unless you provide chain mappings) - Python modules `numpy` and `scipy` must be installed and available (e.g. use ``pip install scipy numpy``) Authors: Gerardo Tauriello, Martino Bertoni """ from ost import mol, geom, conop, seq, settings, PushVerbosityLevel from ost import LogError, LogWarning, LogScript, LogInfo, LogVerbose, LogDebug from ost.bindings.clustalw import ClustalW from ost.mol.alg import lDDTScorer from ost.seq.alg.renumber import Renumber import numpy as np from scipy.misc import factorial from scipy.special import binom from scipy.cluster.hierarchy import fclusterdata import itertools ############################################################################### # QS scoring ############################################################################### class QSscoreError(Exception): """Exception to be raised for "acceptable" exceptions in QS scoring. Those are cases we might want to capture for default behavior. """ pass class QSscorer: """Object to compute QS scores. Simple usage without any precomputed contacts, symmetries and mappings: .. code-block:: python import ost from ost.mol.alg import qsscoring # load two biounits to compare ent_full = ost.io.LoadPDB('3ia3', remote=True) ent_1 = ent_full.Select('cname=A,D') ent_2 = ent_full.Select('cname=B,C') # get score ost.PushVerbosityLevel(3) try: qs_scorer = qsscoring.QSscorer(ent_1, ent_2) ost.LogScript('QSscore:', str(qs_scorer.global_score)) ost.LogScript('Chain mapping used:', str(qs_scorer.chain_mapping)) # commonly you want the QS global score as output qs_score = qs_scorer.global_score except qsscoring.QSscoreError as ex: # default handling: report failure and set score to 0 ost.LogError('QSscore failed:', str(ex)) qs_score = 0 For maximal performance when computing QS scores of the same entity with many others, it is advisable to construct and reuse :class:`QSscoreEntity` objects. Any known / precomputed information can be filled into the appropriate attribute here (no checks done!). Otherwise most quantities are computed on first access and cached (lazy evaluation). Setters are provided to set values with extra checks (e.g. :func:`SetSymmetries`). All necessary seq. alignments are done by global BLOSUM62-based alignment. A multiple sequence alignment is performed with ClustalW unless :attr:`chain_mapping` is provided manually. You will need to have an executable ``clustalw`` or ``clustalw2`` in your ``PATH`` or you must set :attr:`clustalw_bin` accordingly. Otherwise an exception (:class:`ost.settings.FileNotFound`) is thrown. Formulas for QS scores: :: - QS_best = weighted_scores / (weight_sum + weight_extra_mapped) - QS_global = weighted_scores / (weight_sum + weight_extra_all) -> weighted_scores = sum(w(min(d1,d2)) * (1 - abs(d1-d2)/12)) for shared -> weight_sum = sum(w(min(d1,d2))) for shared -> weight_extra_mapped = sum(w(d)) for all mapped but non-shared -> weight_extra_all = sum(w(d)) for all non-shared -> w(d) = 1 if d <= 5, exp(-2 * ((d-5.0)/4.28)^2) else :param ent_1: First structure to be scored. :type ent_1: :class:`QSscoreEntity`, :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView` :param ent_2: Second structure to be scored. :type ent_2: :class:`QSscoreEntity`, :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView` :raises: :class:`QSscoreError` if input structures are invalid or are monomers or have issues that make it impossible for a QS score to be computed. .. attribute:: qs_ent_1 :class:`QSscoreEntity` object for *ent_1* given at construction. If entity names (:attr:`~QSscoreEntity.original_name`) are not unique, we set it to 'pdb_1' using :func:`~QSscoreEntity.SetName`. .. attribute:: qs_ent_2 :class:`QSscoreEntity` object for *ent_2* given at construction. If entity names (:attr:`~QSscoreEntity.original_name`) are not unique, we set it to 'pdb_2' using :func:`~QSscoreEntity.SetName`. .. attribute:: calpha_only True if any of the two structures is CA-only (after cleanup). :type: :class:`bool` .. attribute:: max_ca_per_chain_for_cm Maximal number of CA atoms to use in each chain to determine chain mappings. Setting this to -1 disables the limit. Limiting it speeds up determination of symmetries and chain mappings. By default it is set to 100. :type: :class:`int` """ def __init__(self, ent_1, ent_2, res_num_alignment=False): # generate QSscoreEntity objects? if isinstance(ent_1, QSscoreEntity): self.qs_ent_1 = ent_1 else: self.qs_ent_1 = QSscoreEntity(ent_1) if isinstance(ent_2, QSscoreEntity): self.qs_ent_2 = ent_2 else: self.qs_ent_2 = QSscoreEntity(ent_2) # check validity of inputs if not self.qs_ent_1.is_valid or not self.qs_ent_2.is_valid: raise QSscoreError("Invalid input in QSscorer!") # set names for structures if self.qs_ent_1.original_name == self.qs_ent_2.original_name: self.qs_ent_1.SetName('pdb_1') self.qs_ent_2.SetName('pdb_2') else: self.qs_ent_1.SetName(self.qs_ent_1.original_name) self.qs_ent_2.SetName(self.qs_ent_2.original_name) # set other public attributes self.res_num_alignment = res_num_alignment self.calpha_only = self.qs_ent_1.calpha_only or self.qs_ent_2.calpha_only self.max_ca_per_chain_for_cm = 100 # init cached stuff self._chem_mapping = None self._ent_to_cm_1 = None self._ent_to_cm_2 = None self._symm_1 = None self._symm_2 = None self._chain_mapping = None self._alignments = None self._mapped_residues = None self._global_score = None self._best_score = None self._superposition = None self._clustalw_bin = None @property def chem_mapping(self): """Inter-complex mapping of chemical groups. Each group (see :attr:`QSscoreEntity.chem_groups`) is mapped according to highest sequence identity. Alignment is between longest sequences in groups. Limitations: - If different numbers of groups, we map only the groups for the complex with less groups (rest considered unmapped and shown as warning) - The mapping is forced: the "best" mapping will be chosen independently of how low the seq. identity may be :getter: Computed on first use (cached) :type: :class:`dict` with key = :class:`tuple` of chain names in :attr:`qs_ent_1` and value = :class:`tuple` of chain names in :attr:`qs_ent_2`. :raises: :class:`QSscoreError` if we end up having less than 2 chains for either entity in the mapping (can happen if chains do not have CA atoms). """ if self._chem_mapping is None: self._chem_mapping = _GetChemGroupsMapping(self.qs_ent_1, self.qs_ent_2) return self._chem_mapping @property def ent_to_cm_1(self): """Subset of :attr:`qs_ent_1` used to compute chain mapping and symmetries. Properties: - Includes only residues aligned according to :attr:`chem_mapping` - Includes only 1 CA atom per residue - Has at least 5 and at most :attr:`max_ca_per_chain_for_cm` atoms per chain - All chains of the same chemical group have the same number of atoms (also in :attr:`ent_to_cm_2` according to :attr:`chem_mapping`) - All chains appearing in :attr:`chem_mapping` appear in this entity (so the two can be safely used together) This entity might be transformed (i.e. all positions rotated/translated by same transformation matrix) if this can speed up computations. So do not assume fixed global positions (but relative distances will remain fixed). :getter: Computed on first use (cached) :type: :class:`~ost.mol.EntityHandle` :raises: :class:`QSscoreError` if any chain ends up having less than 5 res. """ if self._ent_to_cm_1 is None: self._ComputeAlignedEntities() return self._ent_to_cm_1 @property def ent_to_cm_2(self): """Subset of :attr:`qs_ent_1` used to compute chain mapping and symmetries (see :attr:`ent_to_cm_1` for details). """ if self._ent_to_cm_2 is None: self._ComputeAlignedEntities() return self._ent_to_cm_2 @property def symm_1(self): """Symmetry groups for :attr:`qs_ent_1` used to speed up chain mapping. This is a list of chain-lists where each chain-list can be used reconstruct the others via cyclic C or dihedral D symmetry. The first chain-list is used as a representative symmetry group. For heteromers, the group-members must contain all different seqres in oligomer. Example: symm. groups [(A,B,C), (D,E,F), (G,H,I)] means that there are symmetry transformations to get (D,E,F) and (G,H,I) from (A,B,C). Properties: - All symmetry group tuples have the same length (num. of chains) - All chains in :attr:`ent_to_cm_1` appear (w/o duplicates) - For heteros: symmetry group tuples have all different chem. groups - Trivial symmetry group = one tuple with all chains (used if inconsistent data provided or if no symmetry is found) - Either compatible to :attr:`symm_2` or trivial symmetry groups used. Compatibility requires same lengths of symmetry group tuples and it must be possible to get an overlap (80% of residues covered within 6 A of a (chem. mapped) chain) of all chains in representative symmetry groups by superposing one pair of chains. :getter: Computed on first use (cached) :type: :class:`list` of :class:`tuple` of :class:`str` (chain names) """ if self._symm_1 is None: self._ComputeSymmetry() return self._symm_1 @property def symm_2(self): """Symmetry groups for :attr:`qs_ent_2` (see :attr:`symm_1` for details).""" if self._symm_2 is None: self._ComputeSymmetry() return self._symm_2 def SetSymmetries(self, symm_1, symm_2): """Set user-provided symmetry groups. These groups are restricted to chain names appearing in :attr:`ent_to_cm_1` and :attr:`ent_to_cm_2` respectively. They are only valid if they cover all chains and both *symm_1* and *symm_2* have same lengths of symmetry group tuples. Otherwise trivial symmetry group used (see :attr:`symm_1`). :param symm_1: Value to set for :attr:`symm_1`. :param symm_2: Value to set for :attr:`symm_2`. """ # restrict chain names self._symm_1 = _CleanUserSymmetry(symm_1, self.ent_to_cm_1) self._symm_2 = _CleanUserSymmetry(symm_2, self.ent_to_cm_2) # check that we have reasonable symmetries set (fallback: all chains) if not _AreValidSymmetries(self._symm_1, self._symm_2): self._symm_1 = [tuple(ch.name for ch in self.ent_to_cm_1.chains)] self._symm_2 = [tuple(ch.name for ch in self.ent_to_cm_2.chains)] @property def chain_mapping(self): """Mapping from :attr:`ent_to_cm_1` to :attr:`ent_to_cm_2`. Properties: - Mapping is between chains of same chem. group (see :attr:`chem_mapping`) - Each chain can appear only once in mapping - All chains of complex with less chains are mapped - Symmetry (:attr:`symm_1`, :attr:`symm_2`) is taken into account Details on algorithms used to find mapping: - We try all pairs of chem. mapped chains within symmetry group and get superpose-transformation for them - First option: check for "sufficient overlap" of other chain-pairs - For each chain-pair defined above: apply superposition to full oligomer and map chains based on structural overlap - Structural overlap = X% of residues in second oligomer covered within Y Angstrom of a (chem. mapped) chain in first oligomer. We successively try (X,Y) = (80,4), (40,6) and (20,8) to be less and less strict in mapping (warning shown for most permissive one). - If multiple possible mappings are found, we choose the one which leads to the lowest multi-chain-RMSD given the superposition - Fallback option: try all mappings to find minimal multi-chain-RMSD (warning shown) - For each chain-pair defined above: apply superposition, try all (!) possible chain mappings (within symmetry group) and keep mapping with lowest multi-chain-RMSD - Repeat procedure above to resolve symmetry. Within the symmetry group we can use the chain mapping computed before and we just need to find which symmetry group in first oligomer maps to which in the second one. We again try all possible combinations... - Limitations: - Trying all possible mappings is a combinatorial nightmare (factorial). We throw an exception if too many combinations (e.g. octomer vs octomer with no usable symmetry) - The mapping is forced: the "best" mapping will be chosen independently of how badly they fit in terms of multi-chain-RMSD - As a result, such a forced mapping can lead to a large range of resulting QS scores. An extreme example was observed between 1on3.1 and 3u9r.1, where :attr:`global_score` can range from 0.12 to 0.43 for mappings with very similar multi-chain-RMSD. :getter: Computed on first use (cached) :type: :class:`dict` with key / value = :class:`str` (chain names, key for :attr:`ent_to_cm_1`, value for :attr:`ent_to_cm_2`) :raises: :class:`QSscoreError` if there are too many combinations to check to find a chain mapping. """ if self._chain_mapping is None: self._chain_mapping = _GetChainMapping(self.ent_to_cm_1, self.ent_to_cm_2, self.symm_1, self.symm_2, self.chem_mapping) LogInfo('Mapping found: %s' % str(self._chain_mapping)) return self._chain_mapping @property def alignments(self): """List of successful sequence alignments using :attr:`chain_mapping`. There will be one alignment for each mapped chain and they are ordered by their chain names in :attr:`qs_ent_1`. The sequences of the alignments are named according to the chain name and have views attached into :attr:`QSscoreEntity.ent` of :attr:`qs_ent_1` and :attr:`qs_ent_2`. :getter: Computed on first use (cached) :type: :class:`list` of :class:`~ost.seq.AlignmentHandle` """ if self._alignments is None: self._alignments = _GetMappedAlignments(self.qs_ent_1.ent, self.qs_ent_2.ent, self.chain_mapping, self.res_num_alignment) return self._alignments @property def mapped_residues(self): """Mapping of shared residues in :attr:`alignments`. :getter: Computed on first use (cached) :type: :class:`dict` *mapped_residues[c1][r1] = r2* with: *c1* = Chain name in first entity (= first sequence in aln), *r1* = Residue number in first entity, *r2* = Residue number in second entity """ if self._mapped_residues is None: self._mapped_residues = _GetMappedResidues(self.alignments) return self._mapped_residues @property def global_score(self): """QS-score with penalties. The range of the score is between 0 (i.e. no interface residues are shared between biounits) and 1 (i.e. the interfaces are identical). The global QS-score is computed applying penalties when interface residues or entire chains are missing (i.e. anything that is not mapped in :attr:`mapped_residues` / :attr:`chain_mapping`) in one of the biounits. :getter: Computed on first use (cached) :type: :class:`float` """ if self._global_score is None: self._ComputeScores() return self._global_score @property def best_score(self): """QS-score without penalties. Like :attr:`global_score`, but neglecting additional residues or chains in one of the biounits (i.e. the score is calculated considering only mapped chains and residues). :getter: Computed on first use (cached) :type: :class:`float` """ if self._best_score is None: self._ComputeScores() return self._best_score @property def superposition(self): """Superposition result based on shared CA atoms in :attr:`alignments`. The superposition can be used to map :attr:`QSscoreEntity.ent` of :attr:`qs_ent_1` onto the one of :attr:`qs_ent_2`. Use :func:`ost.geom.Invert` if you need the opposite transformation. :getter: Computed on first use (cached) :type: :class:`ost.mol.alg.SuperpositionResult` """ if self._superposition is None: self._superposition = _GetQsSuperposition(self.alignments) # report it sup_rmsd = self._superposition.rmsd cmp_view = self._superposition.view1 LogInfo('CA RMSD for %s aligned residues on %s chains: %.2f' \ % (cmp_view.residue_count, cmp_view.chain_count, sup_rmsd)) return self._superposition @property def clustalw_bin(self): """ Full path to ``clustalw`` or ``clustalw2`` executable to use for multiple sequence alignments (unless :attr:`chain_mapping` is provided manually). :getter: Located in path on first use (cached) :type: :class:`str` """ if self._clustalw_bin is None: self._clustalw_bin = settings.Locate(('clustalw', 'clustalw2')) return self._clustalw_bin def GetOligoLDDTScorer(self, settings): """ :return: :class:`OligoLDDTScorer` object, setup for this QS scoring problem. """ return OligoLDDTScorer(self.qs_ent_1.ent, self.qs_ent_2.ent, self.alignments, self.calpha_only, settings) ############################################################################## # Class internal helpers (anything that doesnt easily work without this class) ############################################################################## def _ComputeAlignedEntities(self): """Fills cached ent_to_cm_1 and ent_to_cm_2.""" # get aligned residues via MSA ev1, ev2 = _GetAlignedResidues(self.qs_ent_1, self.qs_ent_2, self.chem_mapping, self.max_ca_per_chain_for_cm, self.clustalw_bin) # extract new entities self._ent_to_cm_1 = mol.CreateEntityFromView(ev1, True) self._ent_to_cm_2 = mol.CreateEntityFromView(ev2, True) # name them self._ent_to_cm_1.SetName(self.qs_ent_1.GetName()) self._ent_to_cm_2.SetName(self.qs_ent_2.GetName()) def _ComputeSymmetry(self): """Fills cached symm_1 and symm_2.""" # get them self._symm_1, self._symm_2 = \ _FindSymmetry(self.qs_ent_1, self.qs_ent_2, self.ent_to_cm_1, self.ent_to_cm_2, self.chem_mapping) # check that we have reasonable symmetries set (fallback: all chains) if not _AreValidSymmetries(self._symm_1, self._symm_2): self._symm_1 = [tuple(ch.name for ch in self.ent_to_cm_1.chains)] self._symm_2 = [tuple(ch.name for ch in self.ent_to_cm_2.chains)] def _ComputeScores(self): """Fills cached global_score and best_score.""" if len(self.chain_mapping) < 2: raise QSscoreError("QS-score is not defined for monomers") # get contacts if self.calpha_only: contacts_1 = self.qs_ent_1.contacts_ca contacts_2 = self.qs_ent_2.contacts_ca else: contacts_1 = self.qs_ent_1.contacts contacts_2 = self.qs_ent_2.contacts # get scores scores = _GetScores(contacts_1, contacts_2, self.mapped_residues, self.chain_mapping) self._best_score = scores[0] self._global_score = scores[1] # report scores LogInfo('QSscore %s, %s: best: %.2f, global: %.2f' \ % (self.qs_ent_1.GetName(), self.qs_ent_2.GetName(), self._best_score, self._global_score)) ############################################################################### # Entity with cached entries for QS scoring ############################################################################### class QSscoreEntity(object): """Entity with cached entries for QS scoring. Any known / precomputed information can be filled into the appropriate attribute here as long as they are labelled as read/write. Otherwise the quantities are computed on first access and cached (lazy evaluation). The heaviest load is expected when computing :attr:`contacts` and :attr:`contacts_ca`. :param ent: Entity to be used for QS scoring. A copy of it will be processed. :type ent: :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView` .. attribute:: is_valid True, if successfully initialized. False, if input structure is monomer or has less than 2 protein chains with >= 20 residues. :type: :class:`bool` .. attribute:: original_name Name set for *ent* when object was created. :type: :class:`str` .. attribute:: ent Cleaned version of *ent* passed at construction. Hydrogens are removed, the entity is processed with a :class:`~ost.conop.RuleBasedProcessor` and chains listed in :attr:`removed_chains` have been removed. The name of this entity might change during scoring (see :func:`GetName`). Otherwise, this will be fixed. :type: :class:`~ost.mol.EntityHandle` .. attribute:: removed_chains Chains removed from *ent* passed at construction. These are ligand and water chains as well as small (< 20 res.) peptides or chains with no amino acids (determined by chem. type, which is set by rule based processor). :type: :class:`list` of :class:`str` .. attribute:: calpha_only Whether entity is CA-only (i.e. it has 0 CB atoms) :type: :class:`bool` """ def __init__(self, ent): # copy entity and process/clean it self.original_name = ent.GetName() ent = mol.CreateEntityFromView(ent.Select('ele!=H and aname!=HN'), True) if not conop.GetDefaultLib(): raise RuntimeError("QSscore computation requires a compound library!") pr = conop.RuleBasedProcessor(conop.GetDefaultLib()) pr.Process(ent) self.ent, self.removed_chains, self.calpha_only = _CleanInputEntity(ent) # check if it's suitable for QS scoring if self.ent.chain_count == 0: LogError('Bad input file: ' + ent.GetName() + '. No chains left after ' 'removing water, ligands and small peptides.') self.is_valid = False elif self.ent.chain_count == 1: LogWarning('Structure ' + ent.GetName() + ' is a monomer.') self.is_valid = True else: self.is_valid = True # init cached stuff self._ca_entity = None self._ca_chains = None self._alignments = {} self._chem_groups = None self._angles = {} self._axis = {} self._contacts = None self._contacts_ca = None def GetName(self): """Wrapper to :func:`~ost.mol.EntityHandle.GetName` of :attr:`ent`. This is used to uniquely identify the entity while scoring. The name may therefore change while :attr:`original_name` remains fixed. """ # for duck-typing and convenience return self.ent.GetName() def SetName(self, new_name): """Wrapper to :func:`~ost.mol.EntityHandle.SetName` of :attr:`ent`. Use this to change unique identifier while scoring (see :func:`GetName`). """ # for duck-typing and convenience self.ent.SetName(new_name) @property def ca_entity(self): """ Reduced representation of :attr:`ent` with only CA atoms. This guarantees that each included residue has exactly one atom. :getter: Computed on first use (cached) :type: :class:`~ost.mol.EntityHandle` """ if self._ca_entity is None: self._ca_entity = _GetCAOnlyEntity(self.ent) return self._ca_entity @property def ca_chains(self): """ Map of chain names in :attr:`ent` to sequences with attached view to CA-only chains (into :attr:`ca_entity`). Useful for alignments and superpositions. :getter: Computed on first use (cached) :type: :class:`dict` (key = :class:`str`, value = :class:`~ost.seq.SequenceHandle`) """ if self._ca_chains is None: self._ca_chains = dict() ca_entity = self.ca_entity for ch in ca_entity.chains: self._ca_chains[ch.name] = seq.SequenceFromChain(ch.name, ch) return self._ca_chains def GetAlignment(self, c1, c2): """Get sequence alignment of chain *c1* with chain *c2*. Computed on first use based on :attr:`ca_chains` (cached). :param c1: Chain name for first chain to align. :type c1: :class:`str` :param c2: Chain name for second chain to align. :type c2: :class:`str` :rtype: :class:`~ost.seq.AlignmentHandle` or None if it failed. """ if (c1,c2) not in self._alignments: ca_chains = self.ca_chains self._alignments[(c1,c2)] = _AlignAtomSeqs(ca_chains[c1], ca_chains[c2]) return self._alignments[(c1,c2)] @property def chem_groups(self): """ Intra-complex group of chemically identical (seq. id. > 95%) polypeptide chains as extracted from :attr:`ca_chains`. First chain in group is the one with the longest sequence. :getter: Computed on first use (cached) :type: :class:`list` of :class:`list` of :class:`str` (chain names) """ if self._chem_groups is None: self._chem_groups = _GetChemGroups(self, 95) LogInfo('Chemically equivalent chain-groups in %s: %s' \ % (self.GetName(), str(self._chem_groups))) return self._chem_groups def GetAngles(self, c1, c2): """Get Euler angles from superposition of chain *c1* with chain *c2*. Computed on first use based on :attr:`ca_chains` (cached). :param c1: Chain name for first chain to superpose. :type c1: :class:`str` :param c2: Chain name for second chain to superpose. :type c2: :class:`str` :return: 3 Euler angles (may contain nan if something fails). :rtype: :class:`numpy.array` """ if (c1,c2) not in self._angles: self._GetSuperposeData(c1, c2) return self._angles[(c1,c2)] def GetAxis(self, c1, c2): """Get axis of symmetry from superposition of chain *c1* with chain *c2*. Computed on first use based on :attr:`ca_chains` (cached). :param c1: Chain name for first chain to superpose. :type c1: :class:`str` :param c2: Chain name for second chain to superpose. :type c2: :class:`str` :return: Rotational axis (may contain nan if something fails). :rtype: :class:`numpy.array` """ if (c1,c2) not in self._axis: self._GetSuperposeData(c1, c2) return self._axis[(c1,c2)] @property def contacts(self): """ Connectivity dictionary (**read/write**). As given by :func:`GetContacts` with *calpha_only* = False on :attr:`ent`. :getter: Computed on first use (cached) :setter: Uses :func:`FilterContacts` to ensure that we only keep contacts for chains in the cleaned entity. :type: See return type of :func:`GetContacts` """ if self._contacts is None: self._contacts = GetContacts(self.ent, False) return self._contacts @contacts.setter def contacts(self, new_contacts): chain_names = set([ch.name for ch in self.ent.chains]) self._contacts = FilterContacts(new_contacts, chain_names) @property def contacts_ca(self): """ CA-only connectivity dictionary (**read/write**). Like :attr:`contacts` but with *calpha_only* = True in :func:`GetContacts`. """ if self._contacts_ca is None: self._contacts_ca = GetContacts(self.ent, True) return self._contacts_ca @contacts_ca.setter def contacts_ca(self, new_contacts): chain_names = set([ch.name for ch in self.ent.chains]) self._contacts_ca = FilterContacts(new_contacts, chain_names) ############################################################################## # Class internal helpers (anything that doesnt easily work without this class) ############################################################################## def _GetSuperposeData(self, c1, c2): """Fill _angles and _axis from superposition of CA chains of c1 and c2.""" # get aligned views (must contain identical numbers of atoms!) aln = self.GetAlignment(c1, c2) if not aln: # fallback for non-aligned stuff (nan) self._angles[(c1,c2)] = np.empty(3) * np.nan self._axis[(c1,c2)] = np.empty(3) * np.nan return v1, v2 = seq.ViewsFromAlignment(aln) if v1.atom_count < 3: # fallback for non-aligned stuff (nan) self._angles[(c1,c2)] = np.empty(3) * np.nan self._axis[(c1,c2)] = np.empty(3) * np.nan return # get transformation sup_res = mol.alg.SuperposeSVD(v1, v2, apply_transform=False) Rt = sup_res.transformation # extract angles a,b,c = _GetAngles(Rt) self._angles[(c1,c2)] = np.asarray([a,b,c]) # extract axis of symmetry R3 = geom.Rotation3(Rt.ExtractRotation()) self._axis[(c1,c2)] = np.asarray(R3.GetRotationAxis().data) ############################################################################### # Contacts computations ############################################################################### def FilterContacts(contacts, chain_names): """Filter contacts to contain only contacts for chains in *chain_names*. :param contacts: Connectivity dictionary as produced by :func:`GetContacts`. :type contacts: :class:`dict` :param chain_names: Chain names to keep. :type chain_names: :class:`list` or (better) :class:`set` :return: New connectivity dictionary (format as in :func:`GetContacts`) :rtype: :class:`dict` """ # create new dict with subset filtered_contacts = dict() for c1 in contacts: if c1 in chain_names: new_contacts = dict() for c2 in contacts[c1]: if c2 in chain_names: new_contacts[c2] = contacts[c1][c2] # avoid adding empty dicts if new_contacts: filtered_contacts[c1] = new_contacts return filtered_contacts def GetContacts(entity, calpha_only, dist_thr=12.0): """Get inter-chain contacts of a macromolecular entity. Contacts are pairs of residues within a given distance belonging to different chains. They are stored once per pair and include the CA/CB-CA/CB distance. :param entity: An entity to check connectivity for. :type entity: :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView` :param calpha_only: If True, we only consider CA-CA distances. Else, we use CB unless the residue is a GLY. :type calpha_only: :class:`bool` :param dist_thr: Maximal CA/CB-CA/CB distance to be considered in contact. :type dist_thr: :class:`float` :return: A connectivity dictionary. A pair of residues with chain names *ch_name1* & *ch_name2* (*ch_name1* < *ch_name2*), residue numbers *res_num1* & *res_num2* and distance *dist* (<= *dist_thr*) are stored as *result[ch_name1][ch_name2][res_num1][res_num2]* = *dist*. :rtype: :class:`dict` """ # get ent copy to search on if calpha_only: ev = entity.Select("aname=CA") else: ev = entity.Select("(rname=GLY and aname=CA) or aname=CB") ent = mol.CreateEntityFromView(ev, True) # search all vs all contacts = dict() for atom in ent.atoms: ch_name1 = atom.chain.name res_num1 = atom.residue.number.num close_atoms = ent.FindWithin(atom.pos, dist_thr) for close_atom in close_atoms: ch_name2 = close_atom.chain.name if ch_name2 > ch_name1: res_num2 = close_atom.residue.number.num dist = geom.Distance(atom.pos, close_atom.pos) # add to contacts if ch_name1 not in contacts: contacts[ch_name1] = dict() if ch_name2 not in contacts[ch_name1]: contacts[ch_name1][ch_name2] = dict() if res_num1 not in contacts[ch_name1][ch_name2]: contacts[ch_name1][ch_name2][res_num1] = dict() contacts[ch_name1][ch_name2][res_num1][res_num2] = round(dist, 3) # DONE return contacts ############################################################################### # Oligo-lDDT scores ############################################################################### class OligoLDDTScorer(object): """A simple class to calculate oligomeric lDDT score.""" # TODO: DOCUMENT def __init__(self, ref, mdl, alignments, calpha_only, settings): if mdl.chain_count > ref.chain_count: LogWarning('MODEL contains more chains than REFERENCE, ' 'lDDT is not considering them') # prepare fields self.ref = ref self.mdl = mdl self.alignments = alignments self.calpha_only = calpha_only self.settings = settings self._old_number_label = "old_num" self._sc_lddt = None self._oligo_lddt = None self._weighted_lddt = None self._lddt_ref = None self._lddt_mdl = None self._oligo_lddt_scorer = None self._mapped_lddt_scorers = None @property def lddt_ref(self): if self._lddt_ref is None: self._PrepareOligoEntities() return self._lddt_ref @property def lddt_mdl(self): if self._lddt_mdl is None: self._PrepareOligoEntities() return self._lddt_mdl @property def oligo_lddt(self): """Fills cached lddt_score, lddt_mdl and lddt_ref.""" if self._oligo_lddt is None: LogInfo('Reference %s has: %s chains' % (self.ref.GetName(), self.ref.chain_count)) LogInfo('Model %s has: %s chains' % (self.mdl.GetName(), self.mdl.chain_count)) # score them (mdl and ref changed) and keep results self._oligo_lddt = self.oligo_lddt_scorer.global_score return self._oligo_lddt @property def oligo_lddt_scorer(self): if self._oligo_lddt_scorer is None: self._oligo_lddt_scorer = lDDTScorer( references=[self.lddt_ref.Select("")], model=self.lddt_mdl.Select(""), settings=self.settings) return self._oligo_lddt_scorer @property def mapped_lddt_scorers(self): if self._mapped_lddt_scorers is None: self._mapped_lddt_scorers = list() for aln in self.alignments: mapped_lddt_scorer = MappedLDDTScorer(aln, self.calpha_only, self.settings) self._mapped_lddt_scorers.append(mapped_lddt_scorer) return self._mapped_lddt_scorers @property def sc_lddt_scorers(self): return [mls.lddt_scorer for mls in self.mapped_lddt_scorers] @property def sc_lddt(self): if self._sc_lddt is None: self._sc_lddt = list() for lddt_scorer in self.sc_lddt_scorers: try: self._sc_lddt.append(lddt_scorer.global_score) except Exception as ex: LogError('Single chain lDDT failed:', str(ex)) self._sc_lddt.append(0.0) return self._sc_lddt @property def weighted_lddt(self): if self._weighted_lddt is None: scores = [s.global_score for s in self.sc_lddt_scorers] weights = [s.total_contacts for s in self.sc_lddt_scorers] nominator = sum([s * w for s, w in zip(scores, weights)]) denominator = sum(weights) if denominator > 0: self._weighted_lddt = nominator / float(denominator) else: self._weighted_lddt = 0.0 return self._weighted_lddt ############################################################################## # Class internal helpers (anything that doesnt easily work without this class) ############################################################################## def _PrepareOligoEntities(self): # simple wrapper to avoid code duplication self._lddt_ref, self._lddt_mdl = _MergeAlignedChains(self.alignments, self.ref, self.mdl, self.calpha_only) class MappedLDDTScorer(object): """A simple class to calculate a single-chain lDDT score on a given chain to chain mapping as extracted from :class:`OligoLDDTScorer`. :param alignment: Sets :attr:`alignment` :param calpha_only: Sets :attr:`calpha_only` :param settings: Sets :attr:`settings` .. attribute:: alignment Alignment with two sequences named according to the mapped chains and with views attached to both sequences (e.g. one of the items of :attr:`QSScorer.alignments`). The first sequence is assumed to be the reference and the second one the model. Since the lDDT score is not symmetric (extra residues in model are ignored), the order is important. :type: :class:`~ost.seq.AlignmentHandle` .. attribute:: calpha_only If true, restricts lDDT score to CA only. :type: :class:`bool` .. attribute:: settings Settings to use for lDDT scoring. :type: :class:`~mol.alg.lDDTSettings` .. attribute:: lddt_scorer lDDT Scorer object for the given chains. :type: :class:`~mol.alg.lDDTScorer` .. attribute:: reference_chain_name Chain name of the reference. :type: :class:`str` .. attribute:: model_chain_name Chain name of the model. :type: :class:`str` """ def __init__(self, alignment, calpha_only, settings): # prepare fields self.alignment = alignment self.calpha_only = calpha_only self.settings = settings self.lddt_scorer = None # set in _InitScorer self.reference_chain_name = alignment.sequences[0].name self.model_chain_name = alignment.sequences[1].name self._old_number_label = "old_num" self._extended_alignment = None # set in _InitScorer # initialize lDDT scorer self._InitScorer() def GetPerResidueScores(self): """ :return: Scores for each residue :rtype: :class:`list` of :class:`dict` with one item for each residue existing in model and reference: - "residue_number": Residue number in reference chain - "residue_name": Residue number in reference chain - "lddt": local lDDT - "conserved_contacts": number of conserved contacts - "total_contacts": total number of contacts """ scores = list() assigned_residues = list() # Make sure the score is calculated self.lddt_scorer.global_score for col in self._extended_alignment: if col[0] != "-" and col.GetResidue(3).IsValid(): ref_res = col.GetResidue(0) mdl_res = col.GetResidue(1) ref_res_renum = col.GetResidue(2) mdl_res_renum = col.GetResidue(3) if ref_res.one_letter_code != ref_res_renum.one_letter_code: raise RuntimeError("Reference residue name mapping inconsistent: %s != %s" % (ref_res.one_letter_code, ref_res_renum.one_letter_code)) if mdl_res.one_letter_code != mdl_res_renum.one_letter_code: raise RuntimeError("Model residue name mapping inconsistent: %s != %s" % (mdl_res.one_letter_code, mdl_res_renum.one_letter_code)) if ref_res.GetNumber().num != ref_res_renum.GetIntProp(self._old_number_label): raise RuntimeError("Reference residue number mapping inconsistent: %s != %s" % (ref_res.GetNumber().num, ref_res_renum.GetIntProp(self._old_number_label))) if mdl_res.GetNumber().num != mdl_res_renum.GetIntProp(self._old_number_label): raise RuntimeError("Model residue number mapping inconsistent: %s != %s" % (mdl_res.GetNumber().num, mdl_res_renum.GetIntProp(self._old_number_label))) if ref_res.qualified_name in assigned_residues: raise RuntimeError("Duplicated residue in reference: " % (ref_res.qualified_name)) else: assigned_residues.append(ref_res.qualified_name) # check if property there (may be missing for CA-only) if mdl_res_renum.HasProp(self.settings.label): scores.append({ "residue_number": ref_res.GetNumber().num, "residue_name": ref_res.name, "lddt": mdl_res_renum.GetFloatProp(self.settings.label), "conserved_contacts": mdl_res_renum.GetFloatProp(self.settings.label + "_conserved"), "total_contacts": mdl_res_renum.GetFloatProp(self.settings.label + "_total")}) return scores ############################################################################## # Class internal helpers (anything that doesnt easily work without this class) ############################################################################## def _InitScorer(self): # Use copy of alignment (extended by 2 extra sequences for renumbering) aln = self.alignment.Copy() # Get chains and renumber according to alignment (for lDDT) reference = Renumber( aln.GetSequence(0), old_number_label=self._old_number_label).CreateFullView() refseq = seq.CreateSequence( "reference_renumbered", aln.GetSequence(0).GetString()) refseq.AttachView(reference) aln.AddSequence(refseq) model = Renumber( aln.GetSequence(1), old_number_label=self._old_number_label).CreateFullView() modelseq = seq.CreateSequence( "model_renumbered", aln.GetSequence(1).GetString()) modelseq.AttachView(model) aln.AddSequence(modelseq) # Filter to CA-only if desired (done after AttachView to not mess it up) if self.calpha_only: self.lddt_scorer = lDDTScorer( references=[reference.Select('aname=CA')], model=model.Select('aname=CA'), settings=self.settings) else: self.lddt_scorer = lDDTScorer( references=[reference], model=model, settings=self.settings) # Store alignment for later self._extended_alignment = aln ############################################################################### # HELPERS ############################################################################### # general def _AlignAtomSeqs(seq_1, seq_2): """ :type seq_1: :class:`ost.seq.SequenceHandle` :type seq_2: :class:`ost.seq.SequenceHandle` :return: Alignment of two sequences using a global aignment. Views attached to the input sequences will remain attached in the aln. :rtype: :class:`~ost.seq.AlignmentHandle` or None if it failed. """ # NOTE: If the two sequence have a greatly different length # a local alignment could be a better choice... aln = None alns = seq.alg.GlobalAlign(seq_1, seq_2, seq.alg.BLOSUM62) if alns: aln = alns[0] if not aln: LogWarning('Failed to align %s to %s' % (seq_1.name, seq_2.name)) LogWarning('%s: %s' % (seq_1.name, seq_1.string)) LogWarning('%s: %s' % (seq_2.name, seq_2.string)) return aln # QS entity def _CleanInputEntity(ent): """ :param ent: The OST entity to be cleaned. :type ent: :class:`EntityHandle` or :class:`EntityView` :return: A tuple of 3 items: :attr:`QSscoreEntity.ent`, :attr:`QSscoreEntity.removed_chains`, :attr:`QSscoreEntity.calpha_only` """ # find chains to remove removed_chains = [] for ch in ent.chains: # we remove chains if they are small-peptides or if the contain no aa # or if they contain only unknown or modified residues if ch.name in ['-', '_'] \ or ch.residue_count < 20 \ or not any(r.chem_type.IsAminoAcid() for r in ch.residues) \ or not (set(r.one_letter_code for r in ch.residues) - {'?', 'X'}): removed_chains.append(ch.name) # remove them from *ent* if removed_chains: chain_set = set() for ch_name in removed_chains: if ch_name in ['-', '_', ' ']: chain_set.add('"%c"' % ch_name) else: chain_set.add(ch_name) view = ent.Select('cname!=%s' % ','.join(chain_set)) ent_new = mol.CreateEntityFromView(view, True) ent_new.SetName(ent.GetName()) else: ent_new = ent # check if CA only calpha_only = False if ent_new.Select('aname=CB').atom_count == 0: LogInfo('Structure %s is a CA only structure!' % ent_new.GetName()) calpha_only = True # report and return if removed_chains: LogInfo('Chains removed from %s: %s' \ % (ent_new.GetName(), ''.join(removed_chains))) LogInfo('Chains in %s: %s' \ % (ent_new.GetName(), ''.join([c.name for c in ent_new.chains]))) return ent_new, removed_chains, calpha_only def _GetCAOnlyEntity(ent): """ :param ent: Entity to process :type ent: :class:`EntityHandle` or :class:`EntityView` :return: New entity with only CA and only one atom per residue (see :attr:`QSscoreEntity.ca_entity`) """ # cook up CA only view (diff from Select = guaranteed 1 atom per residue) ca_view = ent.CreateEmptyView() # add chain by chain for res in ent.residues: ca_atom = res.FindAtom("CA") if ca_atom.IsValid(): ca_view.AddAtom(ca_atom) # finalize return mol.CreateEntityFromView(ca_view, False) def _GetChemGroups(qs_ent, seqid_thr=95.): """ :return: Intra-complex group of chemically identical polypeptide chains (see :attr:`QSscoreEntity.chem_groups`) :param qs_ent: Entity to process :type qs_ent: :class:`QSscoreEntity` :param seqid_thr: Threshold used to decide when two chains are identical. 95 percent tolerates the few mutations crystallographers like to do. :type seqid_thr: :class:`float` """ # get data from qs_ent ca_chains = qs_ent.ca_chains chain_names = sorted(ca_chains.keys()) # get pairs of identical chains # NOTE: this scales quadratically with number of chains and may be optimized # -> one could merge it with "merge transitive pairs" below... id_seqs = [] for ch_1, ch_2 in itertools.combinations(chain_names, 2): aln = qs_ent.GetAlignment(ch_1, ch_2) if aln and seq.alg.SequenceIdentity(aln) > seqid_thr: id_seqs.append((ch_1, ch_2)) # trivial case: no matching pairs if not id_seqs: return [[name] for name in chain_names] # merge transitive pairs groups = [] for ch_1, ch_2 in id_seqs: found = False for g in groups: if ch_1 in g or ch_2 in g: found = True g.add(ch_1) g.add(ch_2) if not found: groups.append(set([ch_1, ch_2])) # sort internally based on sequence length chem_groups = [] for g in groups: ranked_g = sorted([(-ca_chains[ch].length, ch) for ch in g]) chem_groups.append([ch for _,ch in ranked_g]) # add other dissimilar chains for ch in chain_names: if not any(ch in g for g in chem_groups): chem_groups.append([ch]) return chem_groups def _GetAngles(Rt): """Computes the Euler angles given a transformation matrix. :param Rt: Rt operator. :type Rt: :class:`ost.geom.Mat4` :return: A :class:`tuple` of angles for each axis (x,y,z) """ rot = np.asmatrix(Rt.ExtractRotation().data).reshape(3,3) tx = np.arctan2(rot[2,1], rot[2,2]) if tx < 0: tx += 2*np.pi ty = np.arctan2(rot[2,0], np.sqrt(rot[2,1]**2 + rot[2,2]**2)) if ty < 0: ty += 2*np.pi tz = np.arctan2(rot[1,0], rot[0,0]) if tz < 0: tz += 2*np.pi return tx,ty,tz # QS scorer def _GetChemGroupsMapping(qs_ent_1, qs_ent_2): """ :return: Inter-complex mapping of chemical groups (see :attr:`QSscorer.chem_mapping`) :param qs_ent_1: See :attr:`QSscorer.qs_ent_1` :param qs_ent_2: See :attr:`QSscorer.qs_ent_2` """ # get chem. groups and unique representative chem_groups_1 = qs_ent_1.chem_groups chem_groups_2 = qs_ent_2.chem_groups repr_chains_1 = {x[0]: tuple(x) for x in chem_groups_1} repr_chains_2 = {x[0]: tuple(x) for x in chem_groups_2} # if entities do not have different number of unique chains, we get the # mapping for the smaller set swapped = False if len(repr_chains_2) < len(repr_chains_1): repr_chains_1, repr_chains_2 = repr_chains_2, repr_chains_1 qs_ent_1, qs_ent_2 = qs_ent_2, qs_ent_1 swapped = True # find the closest to each chain between the two entities # NOTE: this may still be sensible to orthology problem # -> currently we use a global alignment and seq. id. to rank pairs # -> we also tried local alignments and weighting the seq. id. by the # coverages of the alignments (gapless string in aln. / seq. length) # but global aln performed better... chain_pairs = [] ca_chains_1 = qs_ent_1.ca_chains ca_chains_2 = qs_ent_2.ca_chains for ch_1 in repr_chains_1.keys(): for ch_2 in repr_chains_2.keys(): aln = _AlignAtomSeqs(ca_chains_1[ch_1], ca_chains_2[ch_2]) if aln: chains_seqid = seq.alg.SequenceIdentity(aln) LogVerbose('Sequence identity', ch_1, ch_2, 'seqid=%.2f' % chains_seqid) chain_pairs.append((chains_seqid, ch_1, ch_2)) # get top matching groups first chain_pairs = sorted(chain_pairs, reverse=True) chem_mapping = {} for _, c1, c2 in chain_pairs: skip = False for a,b in chem_mapping.iteritems(): if repr_chains_1[c1] == a or repr_chains_2[c2] == b: skip = True break if not skip: chem_mapping[repr_chains_1[c1]] = repr_chains_2[c2] if swapped: chem_mapping = {y: x for x, y in chem_mapping.iteritems()} qs_ent_1, qs_ent_2 = qs_ent_2, qs_ent_1 # notify chains without partner mapped_1 = set([i for s in chem_mapping.keys() for i in s]) chains_1 = set([c.name for c in qs_ent_1.ent.chains]) if chains_1 - mapped_1: LogWarning('Unmapped Chains in %s: %s' % (qs_ent_1.GetName(), ','.join(list(chains_1 - mapped_1)))) mapped_2 = set([i for s in chem_mapping.values() for i in s]) chains_2 = set([c.name for c in qs_ent_2.ent.chains]) if chains_2 - mapped_2: LogWarning('Unmapped Chains in %s: %s' % (qs_ent_2.GetName(), ','.join(list(chains_2 - mapped_2)))) # check if we have any chains left LogInfo('Chemical chain-groups mapping: ' + str(chem_mapping)) if len(mapped_1) < 1 or len(mapped_2) < 1: raise QSscoreError('Less than 1 chains left in chem_mapping.') return chem_mapping def _SelectFew(l, max_elements): """Return l or copy of l with at most *max_elements* entries.""" n_el = len(l) if n_el <= max_elements: return l else: # cheap integer ceiling (-1 to ensure that x*max_elements gets d_el = x) d_el = ((n_el - 1) // max_elements) + 1 new_l = list() for i in range(0, n_el, d_el): new_l.append(l[i]) return new_l def _GetAlignedResidues(qs_ent_1, qs_ent_2, chem_mapping, max_ca_per_chain, clustalw_bin): """ :return: Tuple of two :class:`~ost.mol.EntityView` objects containing subsets of *qs_ent_1* and *qs_ent_2*. Two entities are later created from those views (see :attr:`QSscorer.ent_to_cm_1` and :attr:`QSscorer.ent_to_cm_2`) :param qs_ent_1: See :attr:`QSscorer.qs_ent_1` :param qs_ent_2: See :attr:`QSscorer.qs_ent_2` :param chem_mapping: See :attr:`QSscorer.chem_mapping` :param max_ca_per_chain: See :attr:`QSscorer.max_ca_per_chain_for_cm` """ # resulting views into CA entities using CA chain sequences ent_view_1 = qs_ent_1.ca_entity.CreateEmptyView() ent_view_2 = qs_ent_2.ca_entity.CreateEmptyView() ca_chains_1 = qs_ent_1.ca_chains ca_chains_2 = qs_ent_2.ca_chains # go through all mapped chemical groups for group_1, group_2 in chem_mapping.iteritems(): # MSA with ClustalW seq_list = seq.CreateSequenceList() # keep sequence-name (must be unique) to view mapping seq_to_empty_view = dict() for ch in group_1: sequence = ca_chains_1[ch].Copy() sequence.name = qs_ent_1.GetName() + '.' + ch seq_to_empty_view[sequence.name] = ent_view_1 seq_list.AddSequence(sequence) for ch in group_2: sequence = ca_chains_2[ch].Copy() sequence.name = qs_ent_2.GetName() + '.' + ch seq_to_empty_view[sequence.name] = ent_view_2 seq_list.AddSequence(sequence) alnc = ClustalW(seq_list, clustalw=clustalw_bin) # collect aligned residues (list of lists of sequence_count valid residues) residue_lists = list() sequence_count = alnc.sequence_count for col in alnc: residues = [col.GetResidue(ir) for ir in range(sequence_count)] if all([r.IsValid() for r in residues]): residue_lists.append(residues) # check number of aligned residues if len(residue_lists) < 5: raise QSscoreError('Not enough aligned residues.') elif max_ca_per_chain > 0: residue_lists = _SelectFew(residue_lists, max_ca_per_chain) # check what view is for which residue res_views = [seq_to_empty_view[alnc.sequences[ir].name] \ for ir in range(sequence_count)] # add to view (note: only 1 CA atom per residue in here) for res_list in residue_lists: for res, view in zip(res_list, res_views): view.AddResidue(res, mol.ViewAddFlag.INCLUDE_ATOMS) # done return ent_view_1, ent_view_2 def _FindSymmetry(qs_ent_1, qs_ent_2, ent_to_cm_1, ent_to_cm_2, chem_mapping): """ :return: A pair of comparable symmetry groups (for :attr:`QSscorer.symm_1` and :attr:`QSscorer.symm_2`) between the two structures. Empty lists if no symmetry identified. :param qs_ent_1: See :attr:`QSscorer.qs_ent_1` :param qs_ent_2: See :attr:`QSscorer.qs_ent_2` :param ent_to_cm_1: See :attr:`QSscorer.ent_to_cm_1` :param ent_to_cm_2: See :attr:`QSscorer.ent_to_cm_2` :param chem_mapping: See :attr:`QSscorer.chem_mapping` """ LogInfo('Identifying Symmetry Groups...') # get possible symmetry groups symm_subg_1 = _GetSymmetrySubgroups(qs_ent_1, ent_to_cm_1, chem_mapping.keys()) symm_subg_2 = _GetSymmetrySubgroups(qs_ent_2, ent_to_cm_2, chem_mapping.values()) # check combination of groups LogInfo('Selecting Symmetry Groups...') # check how many mappings are to be checked for each pair of symmetry groups # -> lower number here will speed up worst-case runtime of _GetChainMapping # NOTE: this is tailored to speed up brute force all vs all mapping test # for preferred _CheckClosedSymmetry this is suboptimal! best_symm = [] for symm_1, symm_2 in itertools.product(symm_subg_1, symm_subg_2): s1 = symm_1[0] s2 = symm_2[0] if len(s1) != len(s2): LogDebug('Discarded', str(symm_1), str(symm_2), ': different size of symmetry groups') continue count = _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping) nr_mapp = count['intra']['mappings'] + count['inter']['mappings'] LogDebug('OK', str(symm_1), str(symm_2), ': %s mappings' % nr_mapp) best_symm.append((nr_mapp, symm_1, symm_2)) for _, symm_1, symm_2 in sorted(best_symm): s1 = symm_1[0] s2 = symm_2[0] group_1 = ent_to_cm_1.Select('cname=%s' % ','.join(s1)) group_2 = ent_to_cm_2.Select('cname=%s' % ','.join(s2)) # check if by superposing a pair of chains within the symmetry group to # superpose all chains within the symmetry group # -> if successful, the symmetry groups are compatible closed_symm = _CheckClosedSymmetry(group_1, group_2, symm_1, symm_2, chem_mapping, 6, 0.8, find_best=False) if closed_symm: return symm_1, symm_2 # nothing found LogInfo('No coherent symmetry identified between structures') return [], [] def _GetChainMapping(ent_1, ent_2, symm_1, symm_2, chem_mapping): """ :return: Mapping from *ent_1* to *ent_2* (see :attr:`QSscorer.chain_mapping`) :param ent_1: See :attr:`QSscorer.ent_to_cm_1` :param ent_2: See :attr:`QSscorer.ent_to_cm_2` :param symm_1: See :attr:`QSscorer.symm_1` :param symm_2: See :attr:`QSscorer.symm_2` :param chem_mapping: See :attr:`QSscorer.chem_mapping` """ LogInfo('Symmetry-groups used in %s: %s' % (ent_1.GetName(), str(symm_1))) LogInfo('Symmetry-groups used in %s: %s' % (ent_2.GetName(), str(symm_2))) # quick check for closed symmetries thresholds = [( 'strict', 4, 0.8), ( 'tolerant', 6, 0.4), ('permissive', 8, 0.2)] for scheme, sup_thr, sup_fract in thresholds: # check if by superposing a pair of chains within the symmetry group to # superpose all chains of the two oligomers # -> this also returns the resulting mapping of chains mapping = _CheckClosedSymmetry(ent_1, ent_2, symm_1, symm_2, chem_mapping, sup_thr, sup_fract) if mapping: LogInfo('Closed Symmetry with %s parameters' % scheme) if scheme == 'permissive': LogWarning('Permissive thresholds used for overlap based mapping ' + \ 'detection: check mapping manually: %s' % mapping) return mapping # NOTE that what follows below is sub-optimal: # - if the two structures don't fit at all, we may map chains rather randomly # - we may need a lot of operations to find globally "best" mapping # -> COST = O(N^2) * O(N!) # (first = all pairwise chain-superpose, latter = all chain mappings) # -> a greedy chain mapping choice algo (pick best RMSD for each one-by-one) # could reduce this to O(N^2) * O(N^2) but it would need to be validated # - one could also try some other heuristic based on center of atoms of chains # -> at this point we get a bad mapping anyways... # if we get here, we will need to check many combinations of mappings # -> check how many mappings must be checked and limit count = _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping) LogInfo('Intra Symmetry-group mappings to check: %s' \ % count['intra']['mappings']) LogInfo('Inter Symmetry-group mappings to check: %s' \ % count['inter']['mappings']) nr_mapp = count['intra']['mappings'] + count['inter']['mappings'] if nr_mapp > 100000: # 322560 is octamer vs octamer raise QSscoreError('Too many possible mappings: %s' % nr_mapp) # to speed up the computations we cache chain views and RMSDs cached_rmsd = _CachedRMSD(ent_1, ent_2) # get INTRA symmetry group chain mapping check = 0 intra_mappings = [] # list of (RMSD, c1, c2, mapping) tuples (best superpose) # limit chem mapping to reference symmetry group ref_symm_1 = symm_1[0] ref_symm_2 = symm_2[0] asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2) # for each chemically identical group for g1, g2 in asu_chem_mapping.iteritems(): # try to superpose all possible pairs for c1, c2 in itertools.product(g1, g2): # get superposition transformation LogVerbose('Superposing chains: %s, %s' % (c1, c2)) res = cached_rmsd.GetSuperposition(c1, c2) # compute RMSD of possible mappings cur_mappings = [] # list of (RMSD, mapping) tuples for mapping in _ListPossibleMappings(c1, c2, asu_chem_mapping): check += 1 chains_rmsd = cached_rmsd.GetMappedRMSD(mapping, res.transformation) cur_mappings.append((chains_rmsd, mapping)) LogVerbose(str(mapping), str(chains_rmsd)) best_rmsd, best_mapp = min(cur_mappings) intra_mappings.append((best_rmsd, c1, c2, best_mapp)) # best chain-chain superposition defines the intra asu mapping _, intra_asu_c1, intra_asu_c2, intra_asu_mapp = min(intra_mappings) # if only one asu is present in any of the complexes, we're done if len(symm_1) == 1 or len(symm_2) == 1: mapping = intra_asu_mapp else: # the mapping is the element position within the asu chain list # -> this speed up a lot, assuming that the order of chain in asu groups # is following the order of symmetry operations index_asu_c1 = ref_symm_1.index(intra_asu_c1) index_asu_c2 = ref_symm_2.index(intra_asu_c2) index_mapp = {ref_symm_1.index(s1): ref_symm_2.index(s2) \ for s1, s2 in intra_asu_mapp.iteritems()} LogInfo('Intra symmetry-group mapping: %s' % str(intra_asu_mapp)) # get INTER symmetry group chain mapping # we take the first symmetry group from the complex having the most if len(symm_1) < len(symm_2): symm_combinations = list(itertools.product(symm_1, [symm_2[0]])) else: symm_combinations = list(itertools.product([symm_1[0]], symm_2)) full_asu_mapp = {tuple(symm_1): tuple(symm_2)} full_mappings = [] # list of (RMSD, mapping) tuples for s1, s2 in symm_combinations: # get superposition transformation (we take best chain-pair in asu) LogVerbose('Superposing symmetry-group: %s, %s in %s, %s' \ % (s1[index_asu_c1], s2[index_asu_c2], s1, s2)) res = cached_rmsd.GetSuperposition(s1[index_asu_c1], s2[index_asu_c2]) # compute RMSD of possible mappings for asu_mapp in _ListPossibleMappings(s1, s2, full_asu_mapp): check += 1 # need to extract full chain mapping (use indexing) mapping = {} for a, b in asu_mapp.iteritems(): for id_a, id_b in index_mapp.iteritems(): mapping[a[id_a]] = b[id_b] chains_rmsd = cached_rmsd.GetMappedRMSD(mapping, res.transformation) full_mappings.append((chains_rmsd, mapping)) LogVerbose(str(mapping), str(chains_rmsd)) if check != nr_mapp: LogWarning('Mapping number estimation was wrong') # sanity check # return best (lowest RMSD) mapping mapping = min(full_mappings)[1] LogWarning('Extensive search used for mapping detection (fallback). This ' + \ 'approach has known limitations. Check mapping manually: %s' \ % mapping) return mapping def _GetSymmetrySubgroups(qs_ent, ent, chem_groups): """ Identify the symmetry (either cyclic C or dihedral D) of the protein and find all possible symmetry subgroups. This is done testing all combination of chain superposition and clustering them by the angles (D) or the axis (C) of the Rt operator. Groups of superposition which can fully reconstruct the structure are possible symmetry subgroups. :param qs_ent: Entity with cached angles and axis. :type qs_ent: :class:`QSscoreEntity` :param ent: Entity from which to extract chains (perfect alignment assumed for superposition as in :attr:`QSscorer.ent_to_cm_1`). :type ent: :class:`EntityHandle` or :class:`EntityView` :param chem_groups: List of tuples/lists of chain names in *ent*. Each list contains all chains belonging to a chem. group (could be from :attr:`QSscoreEntity.chem_groups` or from "keys()" or "values()" of :attr:`QSscorer.chem_mapping`) :return: A list of possible symmetry subgroups (each in same format as :attr:`QSscorer.symm_1`). If no symmetry is found, we return a list with a single symmetry subgroup with a single group with all chains. """ # get angles / axis for pairwise transformations within same chem. group angles = {} axis = {} for cnames in chem_groups: for c1, c2 in itertools.combinations(cnames, 2): cur_angles = qs_ent.GetAngles(c1, c2) if not np.any(np.isnan(cur_angles)): angles[(c1,c2)] = cur_angles cur_axis = qs_ent.GetAxis(c1, c2) if not np.any(np.isnan(cur_axis)): axis[(c1,c2)] = cur_axis # cluster superpositions angles at different thresholds symm_groups = [] LogVerbose('Possible symmetry-groups for: %s' % ent.GetName()) for angle_thr in np.arange(0.1, 1, 0.1): d_symm_groups = _GetDihedralSubgroups(ent, chem_groups, angles, angle_thr) if d_symm_groups: for group in d_symm_groups: if group not in symm_groups: symm_groups.append(group) LogVerbose('Dihedral: %s' % group) LogInfo('Symmetry threshold %.1f used for angles of %s' \ % (angle_thr, ent.GetName())) break # cluster superpositions axis at different thresholds for axis_thr in np.arange(0.1, 1, 0.1): c_symm_groups = _GetCyclicSubgroups(ent, chem_groups, axis, axis_thr) if c_symm_groups: for group in c_symm_groups: if group not in symm_groups: symm_groups.append(group) LogVerbose('Cyclic: %s' % group) LogInfo('Symmetry threshold %.1f used for axis of %s' \ % (axis_thr, ent.GetName())) break # fall back to single "group" containing all chains if none found if not symm_groups: LogInfo('No symmetry-group detected in %s' % ent.GetName()) symm_groups = [[tuple([c for g in chem_groups for c in g])]] return symm_groups def _GetDihedralSubgroups(ent, chem_groups, angles, angle_thr): """ :return: Dihedral subgroups for :func:`_GetSymmetrySubgroups` (same return type as there). Empty list if fail. :param ent: See :func:`_GetSymmetrySubgroups` :param chem_groups: See :func:`_GetSymmetrySubgroups` :param angles: :class:`dict` (key = chain-pair-tuple, value = Euler angles) :param angle_thr: Euler angles distance threshold for clustering (float). """ # cluster superpositions angles if len(angles) == 0: # nothing to be done here return [] else: same_angles = _ClusterData(angles, angle_thr, _AngleArrayDistance) # get those which are non redundant and covering all chains symm_groups = [] for clst in same_angles.values(): group = clst.keys() if _ValidChainGroup(group, ent): if len(chem_groups) > 1: # if hetero, we want to group toghether different chains only symm_groups.append(zip(*group)) else: # if homo, we also want pairs symm_groups.append(group) symm_groups.append(zip(*group)) return symm_groups def _GetCyclicSubgroups(ent, chem_groups, axis, axis_thr): """ :return: Cyclic subgroups for :func:`_GetSymmetrySubgroups` (same return type as there). Empty list if fail. :param ent: See :func:`_GetSymmetrySubgroups` :param chem_groups: See :func:`_GetSymmetrySubgroups` :param angles: :class:`dict` (key = chain-pair-tuple, value = rotation axis) :param angle_thr: Axis distance threshold for clustering (float). """ # cluster superpositions axis if len(axis) == 0: # nothing to be done here return [] else: same_axis = _ClusterData(axis, axis_thr, _AxisDistance) # use to get grouping symm_groups = [] for clst in same_axis.values(): all_chain = [item for sublist in clst.keys() for item in sublist] if len(set(all_chain)) == ent.chain_count: # if we have an hetero we can exploit cyclic symmetry for grouping if len(chem_groups) > 1: ref_chem_group = chem_groups[0] # try two criteria for grouping cyclic_group_closest = [] cyclic_group_iface = [] for c1 in ref_chem_group: group_closest = [c1] group_iface = [c1] for chains in chem_groups[1:]: # center of atoms distance closest = _GetClosestChain(ent, c1, chains) # chain with bigger interface closest_iface = _GetClosestChainInterface(ent, c1, chains) group_closest.append(closest) group_iface.append(closest_iface) cyclic_group_closest.append(tuple(group_closest)) cyclic_group_iface.append(tuple(group_iface)) if _ValidChainGroup(cyclic_group_closest, ent): symm_groups.append(cyclic_group_closest) if _ValidChainGroup(cyclic_group_iface, ent): symm_groups.append(cyclic_group_iface) # if it is a homo, there's not much we can group else: symm_groups.append(chem_groups) return symm_groups def _ClusterData(data, thr, metric): """Wrapper for fclusterdata to get dict of clusters. :param data: :class:`dict` (keys for ID, values used for clustering) :return: :class:`dict` {cluster_idx: {data-key: data-value}} """ # special case length 1 if len(data) == 1: return {0: {data.keys()[0]: data.values()[0]} } # do the clustering cluster_indices = fclusterdata(np.asarray(data.values()), thr, method='complete', criterion='distance', metric=metric) # fclusterdata output is cluster ids -> put into dict of clusters res = {} for cluster_idx, data_key in zip(cluster_indices, data.keys()): if not cluster_idx in res: res[cluster_idx] = {} res[cluster_idx][data_key] = data[data_key] return res def _AngleArrayDistance(u, v): """ :return: Average angular distance of two arrays of angles. :param u: Euler angles. :param v: Euler angles. """ dist = [] for a,b in zip(u,v): delta = abs(a-b) if delta > np.pi: delta = abs(2*np.pi - delta) dist.append(delta) return np.mean(dist) def _AxisDistance(u, v): """ :return: Euclidean distance between two rotation axes. Axes can point in either direction so we ensure to use the closer one. :param u: Rotation axis. :param v: Rotation axis. """ # get axes as arrays (for convenience) u = np.asarray(u) v = np.asarray(v) # get shorter of two possible distances (using v or -v) dv1 = u - v dv2 = u + v d1 = np.dot(dv1, dv1) d2 = np.dot(dv2, dv2) return np.sqrt(min(d1, d2)) def _GetClosestChain(ent, ref_chain, chains): """ :return: Chain closest to *ref_chain* based on center of atoms distance. :rtype: :class:`str` :param ent: See :func:`_GetSymmetrySubgroups` :param ref_chain: We look for chains closest to this one :type ref_chain: :class:`str` :param chains: We only consider these chains :type chains: :class:`list` of :class:`str` """ contacts = [] ref_center = ent.FindChain(ref_chain).center_of_atoms for ch in chains: center = ent.FindChain(ch).center_of_atoms contacts.append((geom.Distance(ref_center, center), ch)) closest_chain = min(contacts)[1] return closest_chain def _GetClosestChainInterface(ent, ref_chain, chains): """ :return: Chain with biggest interface (within 10 A) to *ref_chain*. :rtype: :class:`str` :param ent: See :func:`_GetSymmetrySubgroups` :param ref_chain: We look for chains closest to this one :type ref_chain: :class:`str` :param chains: We only consider these chains :type chains: :class:`list` of :class:`str` """ # NOTE: this is computed on a subset of the full biounit and might be # inaccurate. Also it could be extracted from QSscoreEntity.contacts. closest = [] for ch in chains: iface_view = ent.Select('cname=%s and 10 <> [cname=%s]' % (ref_chain, ch)) nr_res = iface_view.residue_count closest.append((nr_res, ch)) closest_chain = max(closest)[1] return closest_chain def _ValidChainGroup(group, ent): """ :return: True, if *group* has unique chain names and as many chains as *ent* :rtype: :class:`bool` :param group: Symmetry groups to check :type group: Same as :attr:`QSscorer.symm_1` :param ent: See :func:`_GetSymmetrySubgroups` """ all_chain = [item for sublist in group for item in sublist] if len(all_chain) == len(set(all_chain)) and\ len(all_chain) == ent.chain_count: return True return False def _LimitChemMapping(chem_mapping, limit_1, limit_2): """ :return: Chem. mapping containing only chains in *limit_1* and *limit_2* :rtype: Same as :attr:`QSscorer.chem_mapping` :param chem_mapping: See :attr:`QSscorer.chem_mapping` :param limit_1: Limits chain names in chem_mapping.keys() :type limit_1: List/tuple of strings :param limit_2: Limits chain names in chem_mapping.values() :type limit_2: List/tuple of strings """ # use set intersection to keep only mapping for chains in limit_X limit_1_set = set(limit_1) limit_2_set = set(limit_2) asu_chem_mapping = dict() for key, value in chem_mapping.iteritems(): new_key = tuple(set(key) & limit_1_set) if new_key: asu_chem_mapping[new_key] = tuple(set(value) & limit_2_set) return asu_chem_mapping def _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping): """ :return: Dictionary of number of mappings and superpositions to be performed. Returned as *result[X][Y] = number* with X = "intra" or "inter" and Y = "mappings" or "superpositions". The idea is that for each pairwise superposition we check all possible mappings. We can check the combinations within (intra) a symmetry group and once established, we check the combinations between different (inter) symmetry groups. :param symm_1: See :attr:`QSscorer.symm_1` :param symm_2: See :attr:`QSscorer.symm_2` :param chem_mapping: See :attr:`QSscorer.chem_mapping` """ # setup c = {} c['intra'] = {} c['inter'] = {} c['intra']['mappings'] = 0 c['intra']['superpositions'] = 0 c['inter']['mappings'] = 0 c['inter']['superpositions'] = 0 # intra ASU mappings within reference symmetry groups ref_symm_1 = symm_1[0] ref_symm_2 = symm_2[0] asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2) for g1, g2 in asu_chem_mapping.iteritems(): chain_superpositions = len(g1) * len(g2) c['intra']['superpositions'] += chain_superpositions map_per_sup = _PermutationOrCombinations(g1[0], g2[0], asu_chem_mapping) c['intra']['mappings'] += chain_superpositions * map_per_sup if len(symm_1) == 1 or len(symm_2) == 1: return c # inter ASU mappings asu_superposition = min(len(symm_1), len(symm_2)) c['inter']['superpositions'] = asu_superposition asu = {tuple(symm_1): tuple(symm_2)} map_per_sup = _PermutationOrCombinations(ref_symm_1, ref_symm_2, asu) c['inter']['mappings'] = asu_superposition * map_per_sup return c def _PermutationOrCombinations(sup1, sup2, chem_mapping): """Should match len(_ListPossibleMappings(sup1, sup2, chem_mapping)).""" # remove superposed elements, put smallest complex as key chem_map = {} for a,b in chem_mapping.iteritems(): new_a = tuple([x for x in a if x != sup1]) new_b = tuple([x for x in b if x != sup2]) chem_map[new_a] = new_b mapp_nr = 1.0 for a, b in chem_map.iteritems(): if len(a) == len(b): mapp_nr *= factorial(len(a)) elif len(a) < len(b): mapp_nr *= binom(len(b), len(a)) elif len(a) > len(b): mapp_nr *= binom(len(a), len(b)) return int(mapp_nr) def _ListPossibleMappings(sup1, sup2, chem_mapping): """ Return a flat list of all possible mappings given *chem_mapping* and keeping mapping of *sup1* and *sup2* fixed. For instance if elements are chain names this is all the mappings to check for a given superposition. Elements in first complex are defined by *chem_mapping.keys()* (list of list of elements) and elements in second complex by *chem_mapping.values()*. If complexes don't have same number of elements, we map only elements for the one with less. Also mapping is only between elements of mapped groups according to *chem_mapping*. :rtype: :class:`list` of :class:`dict` (key = element in chem_mapping-key, value = element in chem_mapping-value) :param sup1: Element for which mapping is fixed. :type sup1: Like element in chem_mapping-key :param sup2: Element for which mapping is fixed. :type sup2: Like element in chem_mapping-value :param chem_mapping: Defines mapping between groups of elements (e.g. result of :func:`_LimitChemMapping`). :type chem_mapping: :class:`dict` with key / value = :class:`tuple` :raises: :class:`QSscoreError` if reference complex (first one or one with less elements) has more elements for any given mapped group. """ # find smallest complex chain1 = [i for s in chem_mapping.keys() for i in s] chain2 = [i for s in chem_mapping.values() for i in s] swap = False if len(chain1) > len(chain2): swap = True # remove superposed elements, put smallest complex as key chem_map = {} for a, b in chem_mapping.iteritems(): new_a = tuple([x for x in a if x != sup1]) new_b = tuple([x for x in b if x != sup2]) if swap: chem_map[new_b] = new_a else: chem_map[new_a] = new_b # generate permutations or combinations of chemically # equivalent chains chem_perm = [] chem_ref = [] for a, b in chem_map.iteritems(): if len(a) == len(b): chem_perm.append(list(itertools.permutations(b))) chem_ref.append(a) elif len(a) < len(b): chem_perm.append(list(itertools.combinations(b, len(a)))) chem_ref.append(a) else: raise QSscoreError('Impossible to define reference group: %s' \ % str(chem_map)) # save the list of possible mappings mappings = [] flat_ref = [i for s in chem_ref for i in s] for perm in itertools.product(*chem_perm): flat_perm = [i for s in perm for i in s] d = {c1: c2 for c1, c2 in zip(flat_ref, flat_perm)} if swap: d = {v: k for k, v in d.items()} d.update({sup1: sup2}) mappings.append(d) return mappings def _CheckClosedSymmetry(ent_1, ent_2, symm_1, symm_2, chem_mapping, sup_thr=4, sup_fract=0.8, find_best=True): """ Quick check if we can superpose two chains and get a mapping for all other chains using the same transformation. The mapping is defined by sufficient overlap of the transformed chain of *ent_1* onto another chain in *ent_2*. :param ent_1: Entity to map to *ent_2* (perfect alignment assumed between chains of same chem. group as in :attr:`QSscorer.ent_to_cm_1`). Views are ok but only to select full chains! :param ent_2: Entity to map to (perfect alignment assumed between chains of same chem. group as in :attr:`QSscorer.ent_to_cm_2`). Views are ok but only to select full chains! :param symm_1: Symmetry groups to use. We only superpose chains within reference symmetry group of *symm_1* and *symm_2*. See :attr:`QSscorer.symm_1` :param symm_2: See :attr:`QSscorer.symm_2` :param chem_mapping: See :attr:`QSscorer.chem_mapping`. All chains in *ent_1* / *ent_2* must be listed here! :param sup_thr: Distance around transformed chain in *ent_1* to check for overlap. :type sup_thr: :class:`float` :param sup_fract: Fraction of atoms in chain of *ent_2* that must be overlapped for overlap to be sufficient. :type sup_fract: :class:`float` :param find_best: If True, we look for best mapping according to :func:`_ChainRMSD`. Otherwise, we return first suitable mapping. :type find_best: :class:`bool` :return: Mapping from *ent_1* to *ent_2* or None if none found. Mapping, if found, is as in :attr:`QSscorer.chain_mapping`. :rtype: :class:`dict` (:class:`str` / :class:`str`) """ # limit chem mapping to reference symmetry group ref_symm_1 = symm_1[0] ref_symm_2 = symm_2[0] asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2) # for each chemically identical group rmsd_mappings = [] for g1, g2 in asu_chem_mapping.iteritems(): # try to superpose all possible pairs # -> note that some chain-chain combinations may work better than others # to superpose the full oligomer (e.g. if some chains are open/closed) for c1, c2 in itertools.product(g1, g2): # get superposition transformation chain_1 = ent_1.Select('cname=%s' % c1) chain_2 = ent_2.Select('cname=%s' % c2) res = mol.alg.SuperposeSVD(chain_1, chain_2, apply_transform=False) # look for overlaps mapping = _GetSuperpositionMapping(ent_1, ent_2, chem_mapping, res.transformation, sup_thr, sup_fract) if not mapping: continue # early abort if we only want the first one if not find_best: return mapping else: # get RMSD for sorting rmsd = _GetMappedRMSD(ent_1, ent_2, mapping, res.transformation) rmsd_mappings.append((rmsd, mapping)) # return best mapping if rmsd_mappings: return min(rmsd_mappings)[1] else: return None def _GetSuperpositionMapping(ent_1, ent_2, chem_mapping, transformation, sup_thr, sup_fract): """ :return: Dict with chain mapping from *ent_1* to *ent_2* or None if failed (see :func:`_CheckClosedSymmetry`). :param ent_1: See :func:`_CheckClosedSymmetry` :param ent_2: See :func:`_CheckClosedSymmetry` :param chem_mapping: See :func:`_CheckClosedSymmetry` :param transformation: Superposition transformation to be applied to *ent_1*. :param sup_thr: See :func:`_CheckClosedSymmetry` :param sup_fract: See :func:`_CheckClosedSymmetry` """ # NOTE: this seems to be the comput. most expensive part in QS scoring # -> it could be moved to C++ for speed-up # -> the next expensive bits are ClustalW and GetContacts btw... # swap if needed (ent_1 must be shorter or same) if ent_1.chain_count > ent_2.chain_count: swap = True ent_1, ent_2 = ent_2, ent_1 transformation = geom.Invert(transformation) chem_pairs = zip(chem_mapping.values(), chem_mapping.keys()) else: swap = False chem_pairs = chem_mapping.iteritems() # sanity check if ent_1.chain_count == 0: return None # extract valid partners for each chain in ent_1 chem_partners = dict() for cg1, cg2 in chem_pairs: for ch in cg1: chem_partners[ch] = set(cg2) # get mapping for each chain in ent_1 mapping = dict() mapped_chains = set() for ch_1 in ent_1.chains: # get all neighbors split by chain (NOTE: this muight be moved to C++) ch_atoms = {ch_2.name: set() for ch_2 in ent_2.chains} for a_1 in ch_1.handle.atoms: transformed_pos = geom.Vec3(transformation * geom.Vec4(a_1.pos)) a_within = ent_2.FindWithin(transformed_pos, sup_thr) for a_2 in a_within: ch_atoms[a_2.chain.name].add(a_2.hash_code) # get one with most atoms in overlap max_num, max_name = max((len(atoms), name) for name, atoms in ch_atoms.iteritems()) # early abort if overlap fraction not good enough ch_2 = ent_2.FindChain(max_name) if max_num == 0 or max_num / float(ch_2.handle.atom_count) < sup_fract: return None # early abort if mapped to chain of different chem. group ch_1_name = ch_1.name if ch_1_name not in chem_partners: raise RuntimeError("Chem. mapping doesn't contain all chains!") if max_name not in chem_partners[ch_1_name]: return None # early abort if multiple ones mapped to same chain if max_name in mapped_chains: return None # set mapping mapping[ch_1_name] = max_name mapped_chains.add(max_name) # unswap if needed and return if swap: mapping = {v: k for k, v in mapping.iteritems()} return mapping def _GetMappedRMSD(ent_1, ent_2, chain_mapping, transformation): """ :return: RMSD between complexes considering chain mapping. :param ent_1: Entity mapped to *ent_2* (perfect alignment assumed between mapped chains as in :attr:`QSscorer.ent_to_cm_1`). :param ent_2: Entity which was mapped to (perfect alignment assumed between mapped chains as in :attr:`QSscorer.ent_to_cm_2`). :param chain_mapping: See :attr:`QSscorer.chain_mapping` :param transformation: Superposition transformation to be applied to *ent_1*. """ # collect RMSDs and atom counts chain by chain and combine afterwards rmsds = [] atoms = [] for c1, c2 in chain_mapping.iteritems(): # get views and atom counts chain_1 = ent_1.Select('cname=%s' % c1) chain_2 = ent_2.Select('cname=%s' % c2) atom_count = chain_1.atom_count if atom_count != chain_2.atom_count: raise RuntimeError('Chains in _GetMappedRMSD must be perfectly aligned!') # get RMSD rmsd = mol.alg.CalculateRMSD(chain_1, chain_2, transformation) # update lists rmsds.append(rmsd) atoms.append(float(atom_count)) # combine (reminder: RMSD = sqrt(sum(atom_distance^2)/atom_count)) rmsd = np.sqrt( sum([a * r**2 for a, r in zip(atoms, rmsds)]) / sum(atoms) ) return rmsd class _CachedRMSD: """Helper object for repetitive RMSD calculations. Meant to speed up :func:`_GetChainMapping` but could also be used to replace :func:`_GetMappedRMSD` in :func:`_CheckClosedSymmetry`. :param ent_1: See :attr:`QSscorer.ent_to_cm_1` :param ent_2: See :attr:`QSscorer.ent_to_cm_2` """ def __init__(self, ent_1, ent_2): # initialize caches and keep entities self.ent_1 = ent_1 self.ent_2 = ent_2 self._chain_views_1 = dict() self._chain_views_2 = dict() self._pair_rmsd = dict() # key = (c1,c2), value = (atom_count,rmsd) def GetChainView1(self, cname): """Get cached view on chain *cname* for :attr:`ent_1`.""" if cname not in self._chain_views_1: self._chain_views_1[cname] = self.ent_1.Select('cname=%s' % cname) return self._chain_views_1[cname] def GetChainView2(self, cname): """Get cached view on chain *cname* for :attr:`ent_2`.""" if cname not in self._chain_views_2: self._chain_views_2[cname] = self.ent_2.Select('cname=%s' % cname) return self._chain_views_2[cname] def GetSuperposition(self, c1, c2): """Get superposition result (no change in entities!) for *c1* to *c2*. This invalidates cached RMSD results used in :func:`GetMappedRMSD`. :param c1: chain name for :attr:`ent_1`. :param c2: chain name for :attr:`ent_2`. """ # invalidate _pair_rmsd self._pair_rmsd = dict() # superpose chain_1 = self.GetChainView1(c1) chain_2 = self.GetChainView2(c2) if chain_1.atom_count != chain_2.atom_count: raise RuntimeError('Chains in GetSuperposition not perfectly aligned!') return mol.alg.SuperposeSVD(chain_1, chain_2, apply_transform=False) def GetMappedRMSD(self, chain_mapping, transformation): """ :return: RMSD between complexes considering chain mapping. :param chain_mapping: See :attr:`QSscorer.chain_mapping`. :param transformation: Superposition transformation (e.g. res.transformation for res = :func:`GetSuperposition`). """ # collect RMSDs and atom counts chain by chain and combine afterwards rmsds = [] atoms = [] for c1, c2 in chain_mapping.iteritems(): # cached? if (c1, c2) in self._pair_rmsd: atom_count, rmsd = self._pair_rmsd[(c1, c2)] else: # get views and atom counts chain_1 = self.GetChainView1(c1) chain_2 = self.GetChainView2(c2) atom_count = chain_1.atom_count if atom_count != chain_2.atom_count: raise RuntimeError('Chains in GetMappedRMSD not perfectly aligned!') # get RMSD rmsd = mol.alg.CalculateRMSD(chain_1, chain_2, transformation) self._pair_rmsd[(c1, c2)] = (atom_count, rmsd) # update lists rmsds.append(rmsd) atoms.append(float(atom_count)) # combine (reminder: RMSD = sqrt(sum(atom_distance^2)/atom_count)) rmsd = np.sqrt( sum([a * r**2 for a, r in zip(atoms, rmsds)]) / sum(atoms) ) return rmsd def _CleanUserSymmetry(symm, ent): """Clean-up user provided symmetry. :param symm: Symmetry group as in :attr:`QSscorer.symm_1` :param ent: Entity from which to extract chain names :type ent: :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView` :return: New symmetry group limited to chains in sub-structure *ent* (see :attr:`QSscorer.symm_1`). Empty list if invalid symmetry. """ # restrict symm to only contain chains in ent chain_names = set([ch.name for ch in ent.chains]) new_symm = list() for symm_group in symm: new_group = tuple(ch for ch in symm_group if ch in chain_names) if new_group: new_symm.append(new_group) # report it if new_symm != symm: LogInfo("Cleaned user symmetry for %s: %s" % (ent.GetName(), new_symm)) # do all groups have same length? lengths = [len(symm_group) for symm_group in new_symm] if lengths[1:] != lengths[:-1]: LogWarning('User symmetry group of different sizes for %s. Ignoring it!' \ % (ent.GetName())) return [] # do we cover all chains? s_chain_names = set([ch for symm_group in new_symm for ch in symm_group]) if len(s_chain_names) != sum(lengths): LogWarning('User symmetry group for %s has duplicate chains. Ignoring it!' \ % (ent.GetName())) return [] if s_chain_names != chain_names: LogWarning('User symmetry group for %s is missing chains. Ignoring it!' \ % (ent.GetName())) return [] # ok all good return new_symm def _AreValidSymmetries(symm_1, symm_2): """Check symmetry pair for major problems. :return: False if any of the two is empty or if they're compatible in size. :rtype: :class:`bool` """ if not symm_1 or not symm_2: return False if len(symm_1) != 1 or len(symm_2) != 1: if not len(symm_1[0]) == len(symm_2[0]): LogWarning('Symmetry groups of different sizes. Ignoring them!') return False return True def _GetMappedAlignments(ent_1, ent_2, chain_mapping, res_num_alignment=True): """ :return: Alignments of 2 structures given chain mapping (see :attr:`QSscorer.alignments`). :param ent_1: Entity containing all chains in *chain_mapping.keys()*. Views to this entity attached to first sequence of each aln. :param ent_2: Entity containing all chains in *chain_mapping.values()*. Views to this entity attached to second sequence of each aln. :param chain_mapping: See :attr:`QSscorer.chain_mapping` """ alns = list() for ch_1_name in sorted(chain_mapping): # get both sequences incl. attached view ch_1 = ent_1.FindChain(ch_1_name) ch_2 = ent_2.FindChain(chain_mapping[ch_1_name]) if res_num_alignment: max_res_num = max([r.number.GetNum() for r in ch_1.residues] + [r.number.GetNum() for r in ch_2.residues]) ch1_aln = ["-"] * max_res_num ch2_aln = ["-"] * max_res_num for res in ch_1.residues: ch1_aln[res.number.GetNum() - 1] = res.GetOneLetterCode() ch1_aln = "".join(ch1_aln) seq_1 = seq.CreateSequence(ch_1.name, str(ch1_aln)) seq_1.AttachView(ch_1.Select("")) for res in ch_2.residues: ch2_aln[res.number.GetNum() - 1] = res.GetOneLetterCode() ch2_aln = "".join(ch2_aln) seq_2 = seq.CreateSequence(ch_2.name, str(ch2_aln)) seq_2.AttachView(ch_2.Select("")) # Create alignment aln = seq.CreateAlignment() aln.AddSequence(seq_1) aln.AddSequence(seq_2) else: seq_1 = seq.SequenceFromChain(ch_1.name, ch_1) seq_2 = seq.SequenceFromChain(ch_2.name, ch_2) # align them aln = _AlignAtomSeqs(seq_1, seq_2) if aln: alns.append(aln) return alns def _GetMappedResidues(alns): """ :return: Mapping of shared residues in *alns* (with views attached) (see :attr:`QSscorer.mapped_residues`). :param alns: See :attr:`QSscorer.alignments` """ mapped_residues = dict() for aln in alns: # prepare dict for c1 c1 = aln.GetSequence(0).name mapped_residues[c1] = dict() # get shared residues v1, v2 = seq.ViewsFromAlignment(aln) for res_1, res_2 in zip(v1.residues, v2.residues): r1 = res_1.number.num r2 = res_2.number.num mapped_residues[c1][r1] = r2 return mapped_residues def _GetExtraWeights(contacts, done, mapped_residues): """Return sum of extra weights for contacts of chains in set and not in done. :return: Tuple (weight_extra_mapped, weight_extra_all). weight_extra_mapped only sums if both cX,rX in mapped_residues weight_extra_all sums all :param contacts: See :func:`GetContacts` for first entity :param done: List of (c1, c2, r1, r2) tuples to ignore :param mapped_residues: See :func:`_GetMappedResidues` """ weight_extra_mapped = 0 weight_extra_non_mapped = 0 for c1 in contacts: for c2 in contacts[c1]: for r1 in contacts[c1][c2]: for r2 in contacts[c1][c2][r1]: if (c1, c2, r1, r2) not in done: weight = _weight(contacts[c1][c2][r1][r2]) if c1 in mapped_residues and r1 in mapped_residues[c1] \ and c2 in mapped_residues and r2 in mapped_residues[c2]: weight_extra_mapped += weight else: weight_extra_non_mapped += weight return weight_extra_mapped, weight_extra_mapped + weight_extra_non_mapped def _GetScores(contacts_1, contacts_2, mapped_residues, chain_mapping): """Get QS scores (see :class:`QSscorer`). Note that if some chains are not to be considered at all, they must be removed from *contacts_1* / *contacts_2* prior to calling this. :param contacts_1: See :func:`GetContacts` for first entity :param contacts_2: See :func:`GetContacts` for second entity :param mapped_residues: See :func:`_GetMappedResidues` :param chain_mapping: Maps any chain name in *mapped_residues* to chain name for *contacts_2*. :type chain_mapping: :class:`dict` (:class:`str` / :class:`str`) :return: Tuple (QS_best, QS_global) (see :attr:`QSscorer.best_score` and see :attr:`QSscorer.global_score`) """ # keep track of considered contacts as set of (c1,c2,r1,r2) tuples done_1 = set() done_2 = set() weighted_scores = 0 weight_sum = 0 # naming cXY, rXY: X = 1/2 for contact, Y = 1/2/T for mapping (T = tmp) # -> d1 = contacts_1[c11][c21][r11][r21], d2 = contacts_2[c12][c22][r12][r22] for c11 in contacts_1: # map to other one if c11 not in mapped_residues: continue c1T = chain_mapping[c11] # second chain for c21 in contacts_1[c11]: # map to other one if c21 not in mapped_residues: continue c2T = chain_mapping[c21] # flip if needed flipped_chains = (c1T > c2T) if flipped_chains: c12, c22 = c2T, c1T else: c12, c22 = c1T, c2T # skip early if no contacts there if c12 not in contacts_2 or c22 not in contacts_2[c12]: continue # loop over res.num. in c11 for r11 in contacts_1[c11][c21]: # map to other one and skip if no contacts there if r11 not in mapped_residues[c11]: continue r1T = mapped_residues[c11][r11] # loop over res.num. in c21 for r21 in contacts_1[c11][c21][r11]: # map to other one and skip if no contacts there if r21 not in mapped_residues[c21]: continue r2T = mapped_residues[c21][r21] # flip if needed if flipped_chains: r12, r22 = r2T, r1T else: r12, r22 = r1T, r2T # skip early if no contacts there if r12 not in contacts_2[c12][c22]: continue if r22 not in contacts_2[c12][c22][r12]: continue # ok now we can finally do the scoring d1 = contacts_1[c11][c21][r11][r21] d2 = contacts_2[c12][c22][r12][r22] weight = _weight(min(d1, d2)) weighted_scores += weight * (1 - abs(d1 - d2) / 12) weight_sum += weight # keep track of done ones done_1.add((c11, c21, r11, r21)) done_2.add((c12, c22, r12, r22)) LogVerbose("Shared contacts: %d" % len(done_1)) # add the extra weights weights_extra_1 = _GetExtraWeights(contacts_1, done_1, mapped_residues) mapped_residues_2 = dict() for c1 in mapped_residues: c2 = chain_mapping[c1] mapped_residues_2[c2] = set() for r1 in mapped_residues[c1]: mapped_residues_2[c2].add(mapped_residues[c1][r1]) weights_extra_2 = _GetExtraWeights(contacts_2, done_2, mapped_residues_2) weight_extra_mapped = weights_extra_1[0] + weights_extra_2[0] weight_extra_all = weights_extra_1[1] + weights_extra_2[1] # get scores denom_best = weight_sum + weight_extra_mapped denom_all = weight_sum + weight_extra_all if denom_best == 0: QS_best = 0 else: QS_best = weighted_scores / denom_best if denom_all == 0: QS_global = 0 else: QS_global = weighted_scores / denom_all return QS_best, QS_global def _weight(dist): """ This weight expresses the probability of two residues to interact given the CB distance (from Xu et al. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573399/) """ if dist <= 5.0: return 1 x = (dist-5.0)/4.28; return np.exp(-2*x*x) def _GetQsSuperposition(alns): """ :return: Superposition result based on shared CA atoms in *alns* (with views attached) (see :attr:`QSscorer.superposition`). :param alns: See :attr:`QSscorer.alignments` """ # check input if not alns: raise QSscoreError('No successful alignments for superposition!') # prepare views view_1 = alns[0].GetSequence(0).attached_view.CreateEmptyView() view_2 = alns[0].GetSequence(1).attached_view.CreateEmptyView() # collect CA from alignments in proper order for aln in alns: for col in aln: res_1 = col.GetResidue(0) res_2 = col.GetResidue(1) if res_1.IsValid() and res_2.IsValid(): ca_1 = res_1.FindAtom('CA') ca_2 = res_2.FindAtom('CA') if ca_1.IsValid() and ca_2.IsValid(): view_1.AddAtom(ca_1) view_2.AddAtom(ca_2) # superpose them without chainging entities res = mol.alg.SuperposeSVD(view_1, view_2, apply_transform=False) return res def _AddResidue(edi, res, rnum, chain, calpha_only): """ Add residue *res* with res. num. *run* to given *chain* using editor *edi*. Either all atoms added or (if *calpha_only*) only CA. """ if calpha_only: ca_atom = res.FindAtom('CA') if ca_atom.IsValid(): new_res = edi.AppendResidue(chain, res.name, rnum) edi.InsertAtom(new_res, ca_atom.name, ca_atom.pos) else: new_res = edi.AppendResidue(chain, res.name, rnum) for atom in res.atoms: edi.InsertAtom(new_res, atom.name, atom.pos) def _MergeAlignedChains(alns, ent_1, ent_2, calpha_only): """ Create two new entities (based on the alignments attached views) where all residues have same numbering (when they're aligned) and they are all pushed to a single chain X. Also append extra chains contained in *ent_1* and *ent_2* but not contained in *alns*. Used for :attr:`QSscorer.lddt_ref` and :attr:`QSscorer.lddt_mdl` :param alns: List of alignments with attached views (first sequence: *ent_1*, second: *ent_2*). Residue number in single chain is column index of current alignment + sum of lengths of all previous alignments (order of alignments as in input list). :type alns: See :attr:`QSscorer.alignments` :param ent_1: First entity to process. :type ent_1: :class:`~ost.mol.EntityHandle` :param ent_2: Second entity to process. :type ent_2: :class:`~ost.mol.EntityHandle` :param calpha_only: If True, we only include CA atoms instead of all. :type calpha_only: :class:`bool` :return: Tuple of two single chain entities (from *ent_1* and from *ent_2*) :rtype: :class:`tuple` of :class:`~ost.mol.EntityHandle` """ # first new entity ent_ren_1 = mol.CreateEntity() ed_1 = ent_ren_1.EditXCS() new_chain_1 = ed_1.InsertChain('X') # second one ent_ren_2 = mol.CreateEntity() ed_2 = ent_ren_2.EditXCS() new_chain_2 = ed_2.InsertChain('X') # the alignment already contains sorted chains rnum = 0 chain_done_1 = set() chain_done_2 = set() for aln in alns: chain_done_1.add(aln.GetSequence(0).name) chain_done_2.add(aln.GetSequence(1).name) for col in aln: rnum += 1 # add valid residues to single chain entities res_1 = col.GetResidue(0) if res_1.IsValid(): _AddResidue(ed_1, res_1, rnum, new_chain_1, calpha_only) res_2 = col.GetResidue(1) if res_2.IsValid(): _AddResidue(ed_2, res_2, rnum, new_chain_2, calpha_only) # extra chains for chain in ent_1.chains: if chain.name in chain_done_1: continue for res in chain.residues: rnum += 1 _AddResidue(ed_1, res, rnum, new_chain_1, calpha_only) for chain in ent_2.chains: if chain.name in chain_done_2: continue for res in chain.residues: rnum += 1 _AddResidue(ed_2, res, rnum, new_chain_2, calpha_only) # get entity names ent_ren_1.SetName(aln.GetSequence(0).GetAttachedView().GetName()) ent_ren_2.SetName(aln.GetSequence(1).GetAttachedView().GetName()) # connect atoms if not conop.GetDefaultLib(): raise RuntimeError("QSscore computation requires a compound library!") pr = conop.RuleBasedProcessor(conop.GetDefaultLib()) pr.Process(ent_ren_1) ed_1.UpdateICS() pr.Process(ent_ren_2) ed_2.UpdateICS() return ent_ren_1, ent_ren_2 def _ComputeLDDTScore(ref, mdl): """ :return: lDDT of *mdl* vs *ref* (see :attr:`QSscorer.lddt_score`). :param mdl: Reference entity (see :attr:`QSscorer.lddt_mdl`) :param ref: Model entity (see :attr:`QSscorer.lddt_ref`) """ # check input LogInfo('Reference %s has: %s residues' % (ref.GetName(), ref.residue_count)) LogInfo('Model %s has: %s residues' % (mdl.GetName(), mdl.residue_count)) # get lddt score with fixed settings lddt_score = mol.alg.LocalDistDiffTest(mdl.Select(''), ref.Select(''), 2., 8., 'lddt') LogInfo('lDDT score: %.3f' % lddt_score) # add lDDT as B-factor to model for r in mdl.residues: if r.HasProp('lddt'): for a in r.atoms: a.SetBFactor(r.GetFloatProp('lddt')) else: for a in r.atoms: a.SetBFactor(0.0) return lddt_score # specify public interface __all__ = ('QSscoreError', 'QSscorer', 'QSscoreEntity', 'FilterContacts', 'GetContacts', 'OligoLDDTScorer', 'MappedLDDTScorer')