""" Some functions for analyzing trajectories Author: Niklaus Johner """ import ost.mol.alg import ost.geom from ost import LogError import os def smooth(vec,n): #Function to smooth a vector or a list of floats #for each element it takes the average over itself and the #n elements on each side, so over (2n+1) elements try: vec2=vec.copy() except: vec2=vec[:] for i in range(n): v=0.0 count=1.0 v+=vec[i] for j in range(n): count+=1 v+=vec[i+j+1] for j in range(i): count+=1 v+=vec[i-(j+1)] vec2[i]=v/float(count) for i in range(1,n+1): v=0.0 count=1.0 v+=vec[-i] for j in range(n): count+=1 v+=vec[-(i+j+1)] for j in range(i-1): count+=1 v+=vec[-i+j+1] vec2[-i]=v/float(count) for i in range(n,len(vec2)-n): v=vec[i] for j in range(n): v+=vec[i+j+1] v+=vec[i-j-1] vec2[i]=v/float(2.*n+1.) return vec2 """ From here on the module needs numpy """ def RMSD_Matrix_From_Traj(t,sele,first=0,last=-1): """ This function calculates a matrix M such that M[i,j] is the RMSD of the EntityView sele between frames i and j of the trajectory t aligned on sele. Its inputs are: t : the trajectory (CoordGroupHandle) sele : the EntityView used for alignment and RMSD calculation first=0 : the first frame of t to be used last=-1 : the last frame of t to be used Returns a numpy NxN matrix, where n is the number of frames. """ try: import numpy as npy if last==-1:last=t.GetFrameCount() n_frames=last-first rmsd_matrix=npy.identity(n_frames) for i in range(n_frames): t=ost.mol.alg.SuperposeFrames(t,sele,begin=first,end=last,ref=i) eh=t.GetEntity() t.CopyFrame(i) rmsd_matrix[i,:]=ost.mol.alg.AnalyzeRMSD(t,sele,sele) if i==0: last=last-first first=0 return rmsd_matrix except ImportError: LogError("Function needs numpy, but I could not import it.") raise def PairwiseDistancesFromTraj(t,sele,first=0,last=-1,seq_sep=1): """ This function calculates the distances between any pair of atoms in the EntityView sele with sequence separation larger than seq_sep from a trajectory t. It return a matrix containing one line for each atom pair and N columns, where N is the length of the trajectory. Its inputs are: t : the trajectory (CoordGroupHandle) sele : the EntityView used to determine the atom pairs first=0 : the first frame of t to be used last=-1 : the last frame of t to be used seq_sep=1 : The minimal sequence separation between Returns a numpy NpairsxNframes matrix. """ try: import numpy as npy if last==-1:last=t.GetFrameCount() n_frames=last-first n_var=0 for i,a1 in enumerate(sele.atoms): for j,a2 in enumerate(sele.atoms): if not j-i<seq_sep:n_var+=1 #n_var=sele.GetAtomCount() #n_var=(n_var-1)*(n_var)/2. dist_matrix=npy.zeros(n_frames*n_var) dist_matrix=dist_matrix.reshape(n_var,n_frames) k=0 for i,a1 in enumerate(sele.atoms): for j,a2 in enumerate(sele.atoms): if j-i<seq_sep:continue dist_matrix[k]=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last] k+=1 return dist_matrix except ImportError: LogError("Function needs numpy, but I could not import it.") raise def DistanceMatrixFromPairwiseDistances(distances,p=2): """ This function calculates an distance matrix M(NxN) from the pairwise distances matrix D(MxN), where N is the number of frames in the trajectory and M the number of atom pairs. M[i,j] is the distance between frame i and frame j calculated as a p-norm of the differences in distances from the two frames (distance-RMSD for p=2). Inputs: distances : a pairwise distance matrix as obtained from PairwiseDistancesFromTraj() Returns a numpy NxN matrix, where N is the number of frames. """ try: import numpy as npy n1=distances.shape[0] n2=distances.shape[1] dist_mat=npy.identity(n2) for i in range(n2): for j in range(n2): if j<=i:continue d=(((abs(distances[:,i]-distances[:,j])**p).sum())/float(n1))**(1./p) dist_mat[i,j]=d dist_mat[j,i]=d return dist_mat except ImportError: LogError("Function needs numpy, but I could not import it.") raise def DistRMSDFromTraj(t,sele,ref_sele,radius=7.0,average=False,seq_sep=4,first=0,last=-1): """ This function calculates the distance RMSD from a trajectory. The distances selected for the calculation are all the distances between pair of atoms that from residues that are at least seq_sep apart in the sequence and that are smaller than radius in ref_sel. The number and order of atoms in ref_sele and sele should be the same. Its inputs are: t : the trajectory (CoordGroupHandle) sele : the EntityView used to determine the distances from t radius=7 : the upper limit of distances in ref_sele considered for the calculation seq_sep=4 : The minimal sequence separation between atom pairs considered for the calculation average=false : use the average distance in the trajectory as reference instead of the distance obtained from ref_sele first=0 : the first frame of t to be used last=-1 : the last frame of t to be used Returns a numpy vecor dist_rmsd(Nframes). """ if not sele.GetAtomCount()==ref_sele.GetAtomCount(): print 'Not same number of atoms in the two views' return try: import numpy as npy if last==-1:last=t.GetFrameCount() n_frames=last-first dist_rmsd=npy.zeros(n_frames) pair_count=0.0 for i,a1 in enumerate(ref_sele.atoms): for j,a2 in enumerate(ref_sele.atoms): if j<=i:continue r1=a1.GetResidue() c1=r1.GetChain() r2=a2.GetResidue() c2=r2.GetChain() if c1==c2 and abs(r2.GetNumber().num-r1.GetNumber().num)<seq_sep:continue d=ost.geom.Distance(a1.pos,a2.pos) if d<radius: a3=sele.atoms[i] a4=sele.atoms[j] d_traj=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a3.GetHandle(),a4.GetHandle())[first:last] if average:d=npy.mean(d_traj) for k,el in enumerate(d_traj): dist_rmsd[k]+=(el-d)**2.0 pair_count+=1.0 return (dist_rmsd/float(pair_count))**0.5 except ImportError: LogError("Function needs numpy, but I could not import it.") raise def AverageDistanceMatrixFromTraj(t,sele,first=0,last=-1): try: import numpy as npy except ImportError: LogError("Function needs numpy, but I could not import it.") raise n_atoms=sele.GetAtomCount() M=npy.zeros([n_atoms,n_atoms]) for i,a1 in enumerate(sele.atoms): for j,a2 in enumerate(sele.atoms): d=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last] M[i,j]=npy.mean(d) M[j,i]=npy.mean(d) return M