#!/usr/bin/env python3 # ----------------------------------------------------------------------------- # Author : Katsantoni Maria, Christina Herrmann # Company: Mihaela Zavolan, Biozentrum, Basel # This script is part of the Zavolan lab quantification pipeline, which is used # for analysing RNA-seq data. The table is provided by labkey as a csv file. # If the user provides their own table the table should contain the following # columns: # ----------------------------------------------------------------------------- import sys import gzip import labkey from argparse import ArgumentParser, RawTextHelpFormatter import os import sys import numpy as np import pandas as pd from Bio import SeqIO from io import StringIO from csv import writer from pathlib import Path # (avoids long lines in filter definitions) from labkey.query import QueryFilter def main(): """ Preprocess sample folder and create config file for snakemake""" __doc__ = "Preprocess of labkey table and create " + \ "config file and sample table." parser = ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument("genomes_path", help="Path containing the FASTA and GTF " + " files for all organisms", metavar="GENOMES PATH") parser.add_argument("--input-table", type=str, default=None, help="Input table in LabKey format " + "containing the sample information;" + "\nexactly one '--input-table' and " + "'--remote' is required.", metavar="FILE") parser.add_argument("--remote", action="store_true", help="Fetch LabKey table via API; exactly one of " + "'--input-table' and" + "\n'--remote' is required.") parser.add_argument("--project-name", help="Name of LabKey project containing table " + " '--table-name'; required" + "\nif '--remote' is specified.", metavar="STR") parser.add_argument("--table-name", help="Name of LabKey table; required if '--remote'" + " is specified.", metavar="STR") parser.add_argument("--input-dict", help="Input dictionary containing the feature name " + "conversion from LabKey to Snakemake;" + "default: '%(default)s'", default=os.path.join( os.path.dirname(__file__), 'labkey_to_snakemake.dict.tsv'), metavar="FILE") parser.add_argument("--samples-table", help="Output table compatible to snakemake;" + "default: '%(default)s'", default='samples.tsv', metavar="FILE") parser.add_argument("--trim_polya", type=int, choices=[True, False], default=True, help="Trim poly-As option") parser.add_argument("--multimappers", type=int, default=100, help="Number of allowed multimappers", metavar='INT') parser.add_argument("--soft-clip", choices=['EndToEnd', 'Local'], default='EndToEnd', help="Soft-clipping option for STAR") parser.add_argument("--pass-mode", choices=['None', 'Basic'], default='None', help="2-pass mode option for STAR") parser.add_argument("--libtype", default='A', help="Library type for salmon", metavar="STR") parser.add_argument("--config-file", help="Configuration file to be used by Snakemake") try: options = parser.parse_args() except(Exception): parser.print_help() if len(sys.argv) == 1: parser.print_help() sys.exit(1) if options.remote and options.input_table: parser.print_help() print( "\n[ERROR] Options '--input-table' and ", "'--remote' are mutually exclusive.") sys.exit(1) if not options.remote and not options.input_table: parser.print_help() print("\n[ERROR] At least one of '--input-table' ", "and '--remote' is required.") sys.exit(1) if options.remote and not options.project_name: parser.print_help() print( "\n[ERROR] If option '--remote' is specified, ", "option '--project-name' is required.") sys.exit(1) if options.remote and not options.table_name: parser.print_help() print( "\n[ERROR] If option '--remote' is specified, ", "option '--table-name' is required.") sys.exit(1) sys.stdout.write('Reading input file...\n') if options.remote is True: input_table = api_fetch_labkey_table( project_name=options.project_name, query_name=options.table_name) input_table.to_csv(options.input_table, sep='\t', index=False) else: input_table = pd.read_csv( options.input_table, header=0, sep='\t', index_col=None, comment='#', engine='python') input_dict = pd.read_csv( options.input_dict, header=0, sep='\t', index_col=None, comment='#', engine='python') input_dict.set_index('snakemake', inplace=True, drop=True) sys.stdout.write('Create snakemake table...\n') snakemake_table = pd.DataFrame() for index, row in input_table.iterrows(): snakemake_table.loc[index, 'sample'] = row[ input_dict.loc['replicate_name', 'labkey']] + "_" + row[ input_dict.loc['condition', 'labkey']] if row[input_dict.loc['seqmode', 'labkey']] == 'PAIRED': snakemake_table.loc[index, 'seqmode'] = 'paired_end' elif row[input_dict.loc['seqmode', 'labkey']] == 'SINGLE': snakemake_table.loc[index, 'seqmode'] = 'single_end' fq1 = os.path.join( row[input_dict.loc['fastq_path', 'labkey']], row[input_dict.loc['fq1', 'labkey']]) snakemake_table.loc[index, 'fq1'] = fq1 read_length = get_read_length(fq1) snakemake_table.loc[index, 'index_size'] = read_length snakemake_table.loc[index, 'kmer'] = infer_kmer_length(read_length) snakemake_table.loc[index, 'fq1_3p'] = row[ input_dict.loc['fq1_3p', 'labkey']] snakemake_table.loc[index, 'fq1_5p'] = row[ input_dict.loc['fq1_5p', 'labkey']] organism = row[input_dict.loc['organism', 'labkey']].replace( ' ', '_').lower() snakemake_table.loc[index, 'organism'] = organism snakemake_table.loc[index, 'gtf'] = os.path.join( options.genomes_path, organism, 'annotation.gtf') snakemake_table.loc[index, 'gtf_filtered'] = os.path.join( options.genomes_path, organism, 'annotation.gtf') snakemake_table.loc[index, 'genome'] = os.path.join( options.genomes_path, organism, 'genome.fa') snakemake_table.loc[index, 'tr_fasta_filtered'] = os.path.join( options.genomes_path, organism, 'transcriptome.fa') snakemake_table.loc[index, 'sd'] = row[ input_dict.loc['sd', 'labkey']] snakemake_table.loc[index, 'mean'] = row[ input_dict.loc['mean', 'labkey']] snakemake_table.loc[index, 'multimappers'] = options.multimappers snakemake_table.loc[index, 'soft_clip'] = options.soft_clip snakemake_table.loc[index, 'pass_mode'] = options.pass_mode snakemake_table.loc[index, 'libtype'] = options.libtype if options.trim_polya is True: fq1_polya_3p, fq1_polya_5p = trim_polya( row[input_dict.loc['mate1_direction', 'labkey']]) snakemake_table.loc[index, 'fq1_polya_3p'] = fq1_polya_3p snakemake_table.loc[index, 'fq1_polya_5p'] = fq1_polya_5p snakemake_table.loc[index, 'kallisto_directionality'] = \ get_kallisto_directionality( row[input_dict.loc['mate1_direction', 'labkey']]) if row[input_dict.loc['seqmode', 'labkey']] == 'PAIRED': fq2 = os.path.join( row[input_dict.loc['fastq_path', 'labkey']], row[input_dict.loc['fq2', 'labkey']]) snakemake_table.loc[index, 'fq2'] = fq2 snakemake_table.loc[index, 'fq2_3p'] = row[ input_dict.loc['fq2_3p', 'labkey']] snakemake_table.loc[index, 'fq2_5p'] = row[ input_dict.loc['fq2_5p', 'labkey']] if options.trim_polya is True: fq2_polya_3p, fq2_polya_5p = trim_polya( row[input_dict.loc['mate2_direction', 'labkey']]) snakemake_table.loc[index, 'fq2_polya_3p'] = fq2_polya_3p snakemake_table.loc[index, 'fq2_polya_5p'] = fq2_polya_5p snakemake_table.fillna('XXXXXXXXXXXXX', inplace=True) snakemake_table = snakemake_table.astype( { "sd": int, "mean": int, "multimappers": int, "kmer": int, "index_size": int, } ) snakemake_table.to_csv( options.samples_table, sep='\t', header=True, index=False) # Read file and infer read size for sjdbovwerhang with open(options.config_file, 'w') as config_file: config_file.write('''--- samples: "''' + options.samples_table + '''" output_dir: "results/" log_dir: "logs/" kallisto_indexes: "results/kallisto_indexes/" salmon_indexes: "results/salmon_indexes/" star_indexes: "results/star_indexes/" alfa_indexes: "results/alfa_indexes/" ...''') sys.stdout.write('Create snakemake table finished successfully...\n') sys.stdout.write('Create config file...\n') sys.stdout.write('Create config file finished successfully...\n') return def api_fetch_labkey_table(project_name=None, query_name=None): group_path = os.path.join('/Zavolan Group', project_name) server_context = labkey.utils.create_server_context( 'labkey.scicore.unibas.ch', group_path, 'labkey', use_ssl=True) schema_name = "lists" results = labkey.query.select_rows(server_context, schema_name, query_name) input_table = pd.DataFrame(results["rows"]) return input_table def get_read_length(filename): with gzip.open(filename, "rt") as handle: for record in SeqIO.parse(handle, "fastq"): read_length = len(record.seq) break return read_length def infer_kmer_length(read_length): if read_length <= 50: kmer = 21 elif read_length > 50: kmer = 31 return kmer def get_kallisto_directionality(directionality): if directionality == 'SENSE': final_direction = '--fr' elif directionality == 'ANTISENSE': final_direction = '--rf' else: final_direction = '' return final_direction def trim_polya(sense): if sense == 'SENSE': polya_3p = 'AAAAAAAAAAAAAAAAA' polya_5p = 'XXXXXXXXXXXXXXXXX' elif sense == 'ANTISENSE': polya_3p = 'XXXXXXXXXXXXXXXXX' polya_5p = 'TTTTTTTTTTTTTTTTT' else: polya_3p = 'XXXXXXXXXXXXXXXXX' polya_5p = 'XXXXXXXXXXXXXXXXX' return polya_3p, polya_5p if __name__ == '__main__': try: main() except KeyboardInterrupt: sys.stderr.write("User interrupt!" + os.linesep) sys.exit(0)