## ----------------------------------------------------------------------------- # Author : Katsantoni Maria, Christina Herrmann # Company: Mihaela Zavolan, Biozentrum, Basel # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # This script is part of the Zavolan lab quantification pipeline, which is used # for analysing RNA-seq data. The table is provided by labkey and is a csv file. # If the user provides their own table the table should contain the following # columns: # ----------------------------------------------------------------------------- import sys import gzip from argparse import ArgumentParser, RawTextHelpFormatter import os import numpy as np import pandas as pd from Bio import SeqIO from io import StringIO from csv import writer from pathlib import Path # ---------------------------------------------------------------------------------------------------------------------- def main(): """ Preprocess sample folder and create config file for snakemake""" __doc__ = "Preprocess of the table and create config file." parser = ArgumentParser( description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument( "--input_table", dest="input_table", help="input table containing the sample information", required=True, metavar="FILE") parser.add_argument( "--input_dict", dest="input_dict", help="input dictionary containing the feature name \ conversion from labkey to snakemake allowed names", required=True, metavar="FILE") parser.add_argument( "--genomes_path", dest="genomes_path", help="path containing the fasta and gtf files for all organisms", required=True) parser.add_argument( "--multimappers", dest="multimappers", help="number of mulitmappers allowed", required=False, type=int, metavar='value', default=1) parser.add_argument( "--soft_clip", dest="soft_clip", help="soft-clipping option of STAR", required=False, choices=['EndToEnd','Local'], default='EndToEnd') parser.add_argument( "--pass_mode", dest="pass_mode", help="STAR option pass_mode", required=False, choices=['None','Basic'], default='None') parser.add_argument( "--libtype", dest="libtype", help="Library type for salmon", required=False, default='A') parser.add_argument( "--config_file", dest="config_file", help="Configuration file to be used by Snakemake", required=False) parser.add_argument( "--samples_table", dest="samples_table", help="Table with samples", required=True) # __________________________________________________________________________________________________________________ # ------------------------------------------------------------------------------------------------------------------ # get the arguments # ------------------------------------------------------------------------------------------------------------------ try: options = parser.parse_args() except(Exception): parser.print_help() if len(sys.argv) == 1: parser.print_help() sys.exit(1) sys.stdout.write('Reading input file...\n') input_table = pd.read_csv( options.input_table, header=0, sep='\t', index_col=None, comment='#', engine='python') input_dict = pd.read_csv( options.input_dict, header=0, sep='\t', index_col=None, comment='#', engine='python') input_dict.set_index('snakemake', inplace=True, drop=True) sys.stdout.write('Create snakemake table...\n') snakemake_table = pd.DataFrame() for index, row in input_table.iterrows(): if row[input_dict.loc['seqmode', 'labkey']] == 'PAIRED': snakemake_table.loc[index, 'seqmode'] = 'paired_end' elif row[input_dict.loc['seqmode', 'labkey']] == 'SINGLE': snakemake_table.loc[index, 'seqmode'] = 'single_end' fq1 = os.path.join( row[input_dict.loc['fastq_path', 'labkey']], row[input_dict.loc['fq1', 'labkey']]) snakemake_table.loc[index, 'fq1'] = fq1 with gzip.open(fq1, "rt") as handle: for record in SeqIO.parse(handle, "fastq"): read_length = len(record.seq) break snakemake_table.loc[index, 'index_size'] = read_length if read_length <= 50: snakemake_table.loc[index, 'kmer'] = 21 elif read_length > 50: snakemake_table.loc[index, 'kmer'] = 31 snakemake_table.loc[index, 'fq2'] = os.path.join( row[input_dict.loc['fastq_path', 'labkey']], row[input_dict.loc['fq2', 'labkey']]) snakemake_table.loc[index, 'fq1_3p'] = row[input_dict.loc['fq1_3p', 'labkey']] snakemake_table.loc[index, 'fq1_5p'] = row[input_dict.loc['fq1_5p', 'labkey']] snakemake_table.loc[index, 'fq2_3p'] = row[input_dict.loc['fq2_3p', 'labkey']] snakemake_table.loc[index, 'fq2_5p'] = row[input_dict.loc['fq2_5p', 'labkey']] organism = row[input_dict.loc['organism', 'labkey']].replace(' ', '_').lower() snakemake_table.loc[index, 'organism'] = organism snakemake_table.loc[index, 'gtf'] = os.path.join( options.genomes_path, organism, 'annotation.gtf') snakemake_table.loc[index, 'gtf_filtered'] = os.path.join( options.genomes_path, organism, 'annotation.gtf') snakemake_table.loc[index, 'genome'] = os.path.join( options.genomes_path, organism, 'genome.fa') snakemake_table.loc[index, 'tr_fasta_filtered'] = os.path.join( options.genomes_path, organism, 'transcriptome.fa') snakemake_table.loc[index, 'sd'] = row[input_dict.loc['sd', 'labkey']] snakemake_table.loc[index, 'mean'] = row[input_dict.loc['mean', 'labkey']] snakemake_table.loc[index, 'multimappers'] = options.multimappers snakemake_table.loc[index, 'soft_clip'] = options.soft_clip snakemake_table.loc[index, 'pass_mode'] = options.pass_mode snakemake_table.loc[index, 'libtype'] = options.libtype if row[input_dict.loc['mate1_direction', 'labkey']] == 'SENSE': snakemake_table.loc[index, 'kallisto_directionality'] = '--fr-stranded' elif row[input_dict.loc['mate1_direction', 'labkey']] == 'ANTISENSE': snakemake_table.loc[index, 'kallisto_directionality'] = '--rf-stranded' else: snakemake_table.loc[index, 'kallisto_directionality'] = '' if row[input_dict.loc['mate1_direction', 'labkey']] == 'SENSE': snakemake_table.loc[index, 'fq1_polya'] = 'AAAAAAAAAAAAAAAAA' elif row[input_dict.loc['mate1_direction', 'labkey']] == 'ANTISENSE': snakemake_table.loc[index, 'fq1_polya'] = 'TTTTTTTTTTTTTTTTT' elif row[input_dict.loc['mate1_direction', 'labkey']] == 'RANDOM': snakemake_table.loc[index, 'fq1_polya'] = 'AAAAAAAAAAAAAAAAA' else: pass if row[input_dict.loc['mate2_direction', 'labkey']] == 'SENSE': snakemake_table.loc[index, 'fq2_polya'] = 'AAAAAAAAAAAAAAAAA' elif row[input_dict.loc['mate2_direction', 'labkey']] == 'ANTISENSE': snakemake_table.loc[index, 'fq2_polya'] = 'TTTTTTTTTTTTTTTTT' elif row[input_dict.loc['mate2_direction', 'labkey']] == 'RANDOM': snakemake_table.loc[index, 'fq2_polya'] = 'AAAAAAAAAAAAAAAAA' else: pass snakemake_table.to_csv( options.samples_table, sep='\t', header=True, index=False) # Read file and infer read size for sjdbovwerhang with open(options.config_file, 'w') as config_file: config_file.write('''--- output_dir: "results" local_log: "local_log" star_indexes: "star_indexes" kallisto_indexes: "kallisto_indexes" ...''') sys.stdout.write('Create snakemake table finished successfully...\n') sys.stdout.write('Create config file...\n') sys.stdout.write('Create config file finished successfully...\n') return # _____________________________________________________________________________ # ----------------------------------------------------------------------------- # Call the Main function and catch Keyboard interrups # ----------------------------------------------------------------------------- if __name__ == '__main__': try: main() except KeyboardInterrupt: sys.stderr.write("User interrupt!" + os.linesep) sys.exit(0)