diff --git a/transcript_sampler/cli.py b/transcript_sampler/cli.py
index f4d278805d2f8277dc9d2e71813aeaf85cf9c01a..13446a4524f90fb98ce3f1ff16114f8110b19a91 100644
--- a/transcript_sampler/cli.py
+++ b/transcript_sampler/cli.py
@@ -52,8 +52,8 @@ def main():
     log.info("Started transcript sampler.")
     dict_repr_trans = find_rep_trans.get_rep_trans(args.input_gtf)
     df_repr = match_reptrs_explvl.match_repr_transcript_expression_level(
-        dict_reprTrans=dict_repr_trans,
-        exprTrans=args.input_csv,
+        dict_repr_trans=dict_repr_trans,
+        expr_trans=args.input_csv,
         gtf_file=args.input_gtf
         )
     log.info(
diff --git a/transcript_sampler/find_reptrans.py b/transcript_sampler/find_reptrans.py
index 46af0ba6d35fde24fea74d108e80c18dfd66f85c..9c2511f5e42c9d32c1adc9ecfd4ad41f535c4cce 100644
--- a/transcript_sampler/find_reptrans.py
+++ b/transcript_sampler/find_reptrans.py
@@ -52,10 +52,9 @@ class FindRepTrans:
         if look_for in attributes:
             index = attributes.index(look_for) + 1
             return attributes[index]
-        else:
-            LOG.warning('No %s in the entry, the return was set to NA',
-                        look_for)
-            return "NA"
+        LOG.warning('No %s in the entry, the return was set to NA',
+                    look_for)
+        return "NA"
 
     @staticmethod
     def reformat_reptrans(rep_trans_dict: dict) -> dict:
@@ -99,6 +98,9 @@ class FindRepTrans:
         # setting default variables
         rep_transcripts: dict = {}
         cur_g_id = ""
+        cur_t_id = ""
+        pot_best_trans: list = []
+        cur_best_trans: list = []
         # [transcript_id, transcript_support_level, transcript_length]
         cur_best_trans = ["", 100, 0]
 
@@ -126,7 +128,7 @@ class FindRepTrans:
                     if (
                         self.find_in_attributes(
                             attributes, "transcript_id"
-                        ) != cur_t_ID
+                        ) != cur_t_id
                     ):
                         LOG.error("Exon from an unexpected transcript")
                         raise ValueError("Exon from an unexpected transcript")
@@ -137,7 +139,6 @@ class FindRepTrans:
                         pot_best_trans[2] += int(entry[4]) - int(entry[3])
                         if pot_best_trans[2] > cur_best_trans[2]:
                             cur_best_trans = pot_best_trans
-                            pot_best_trans = False
                     else:
                         cur_best_trans[2] += int(entry[4]) - int(entry[3])
 
@@ -149,7 +150,7 @@ class FindRepTrans:
                         raise ValueError("Transcript from an unexpected gene")
 
                     # finding the transcript id and the support level
-                    cur_t_ID = self.find_in_attributes(
+                    cur_t_id = self.find_in_attributes(
                         attributes, "transcript_id"
                         )
                     t_supp_lvl: Union[int, str] = self.find_in_attributes(
@@ -162,21 +163,22 @@ class FindRepTrans:
                     if t_supp_lvl == "NA":
                         t_supp_lvl = 100
                     else:
-                        if isinstance(t_supp_lvl, str) and t_supp_lvl.isdigit():
+                        if isinstance(
+                            t_supp_lvl, str
+                        ) and t_supp_lvl.isdigit():
                             t_supp_lvl = int(t_supp_lvl)
                         else:
                             t_supp_lvl = 100
 
                     # decides if the transcript has potential to become the
                     # representative transcript
-                    if t_supp_lvl < cur_best_trans[1] or cur_best_trans[0] == "":
-                        cur_best_trans = [cur_t_ID, t_supp_lvl, 0]
-                        pot_best_trans = False
-                        ignor_trans = False
+                    if (
+                        t_supp_lvl < cur_best_trans[1] or
+                        cur_best_trans[0] == ""
+                    ):
+                        cur_best_trans = [cur_t_id, t_supp_lvl, 0]
                     elif t_supp_lvl == cur_best_trans[1]:
-                        pot_best_trans = [cur_t_ID, t_supp_lvl, 0]
-                    else:
-                        ignor_trans = True
+                        pot_best_trans = [cur_t_id, t_supp_lvl, 0]
 
                 # looking for and processing gene entries
                 elif entry[2] == "gene":
@@ -221,8 +223,8 @@ class FindRepTrans:
         """
         output = []
 
-        with open(original_file, "r", encoding="utf-8") as f:
-            for line in f:
+        with open(original_file, "r", encoding="utf-8") as file:
+            for line in file:
                 if line.startswith("#"):
                     continue
 
@@ -243,51 +245,3 @@ class FindRepTrans:
 
         with open(output_file, "w", encoding="utf-8") as last_file:
             last_file.writelines(output)
-
-
-# def _test():
-#     """
-#     This funtion is meant to be run for test
-#     Output:
-#         file with the dictionary generated based on the test file
-#     """
-#     file_name = "test.gtf"
-#     rt = get_rep_trans(file_name)
-#     expected_result = {"ENSG00000160072": "ENST00000472194",
-#                        "ENSG00000234396": "ENST00000442483",
-#                        "ENSG00000225972": "ENST00000416931",
-#                        "ENSG00000224315": "ENST00000428803",
-#                        "ENSG00000198744": "ENST00000416718",
-#                        "ENSG00000279928": "ENST00000624431",
-#                        "ENSG00000228037": "ENST00000424215",
-#                        'ENSG00000142611': 'ENST00000378391'}
-#     if rt != expected_result:
-#         print("The test failed due to not yielding the same results")
-#         print("The results the program got\n", rt)
-#         print("The expected results\n", expected_result)
-#     else:
-#         print("The test was successful")
-
-
-# # Execution part #
-# if __name__ == "__main__":
-#     parser = argparse.ArgumentParser(
-#         description="find_representativ_transcripts",
-#         formatter_class=argparse.ArgumentDefaultsHelpFormatter
-#         )
-#     parser.add_argument("-file_name", required=True,
-#                         help="gtf file with genome annotation")
-#     parser.add_argument("-t", required=False, default=False,
-#                         help="to run the test input -t True")
-#     args = parser.parse_args()
-
-#     # standadize the file_name inlude .gtf#
-#     file_name = args.file_name
-#     i_gtf = file_name.find(".gtf")
-#     if i_gtf == -1:
-#         file_name += ".gtf"
-
-#     if args.t:
-#         _test()
-#     else:
-#         get_rep_trans(file_name)
diff --git a/transcript_sampler/match_reptrans_explvl.py b/transcript_sampler/match_reptrans_explvl.py
index 654f8dc95c04ac41822508b82e04bbe85277e114..a914d8ca744c19e8c59b43ce7b526f1d9233cd72 100644
--- a/transcript_sampler/match_reptrans_explvl.py
+++ b/transcript_sampler/match_reptrans_explvl.py
@@ -2,8 +2,8 @@
 # Made by Hugo Gillet #
 
 import logging
-import pandas as pd
-from gtfparse import read_gtf
+import pandas as pd  # type: ignore
+from gtfparse import read_gtf  # type: ignore
 
 LOG = logging.getLogger(__name__)
 
@@ -43,8 +43,7 @@ class MatchReptransExplvl:
     def dict_repr_trans_to_df(
         dict_repr_trans: "dict[str, str]"
     ) -> pd.DataFrame:
-        """
-        Convert a dict of genes and their representative transcript into a df.
+        """Convert a dict of genes and representative transcript into a df.
 
         Args:
             dict_repr_trans (dict):
@@ -87,8 +86,7 @@ class MatchReptransExplvl:
 
     @staticmethod
     def tsv_or_csv_to_df(input_txt: str) -> pd.DataFrame:
-        """
-        Convert a TSV or CSV file into a pandas DataFrame.
+        """Convert a TSV or CSV file into a pandas DataFrame.
 
         Args:
             input_txt (str): TSV or CSV file containing transcript expression
@@ -148,8 +146,7 @@ class MatchReptransExplvl:
         df_repr_transcript: pd.DataFrame,
         df_expression_level_by_gene: pd.DataFrame
     ) -> pd.DataFrame:
-        """
-        Find matching genes between the two DataFrames.
+        """Find matching genes between the two DataFrames.
 
         Args:
             df_repr_transcript (pd.DataFrame): Pandas DataFrame
@@ -207,184 +204,3 @@ class MatchReptransExplvl:
             inplace=True
         )
         return df_match
-
-
-# def dict_repr_trans_to_df(dict_repr_trans: "dict[str, str]") -> pd.DataFrame:
-
-#     """Convert a dictionary of genes and their representative
-#     transcript into a dataframe
-
-#         Args:
-#             dict_repr_trans (dict):
-#               {'Gene':['transcriptA', 'transcriptB'], ...}
-
-#         Returns:
-#             Pandas dataframe having Gene and transcript as columns
-
-#         Raises:
-#             Only dict are allowed
-#             Key should be strings
-#             Value should be strings
-
-#     """
-#     pass
-#     if not type(dict_repr_trans) is dict:
-#         raise TypeError("Only dict are allowed")
-#     if type(list(dict_repr_trans.keys())[0]) is not str:
-#         raise TypeError("Key should be strings")
-#     if type(list(dict_repr_trans.values())[0]) is not str:
-#         raise TypeError("Values should be strings")
-
-#     df_repr_trans = pd.DataFrame.from_dict(
-#         dict_repr_trans, orient="index", columns=["reprTranscript"]
-#     )
-#     df_repr_trans = df_repr_trans.reset_index(level=0)
-#     df_repr_trans.columns = ["Gene", "reprTrans"]
-#     df_repr_trans["reprTrans"] = df_repr_trans["reprTrans"].str.replace(
-#         r"\.[1-9]", "", regex=True
-#     )
-#     return df_repr_trans
-
-
-# def gene_and_transcript(gtf_file: str) -> pd.DataFrame:
-#     """
-#     This function take a .gtf file and convert it into a
-#     dataframe containing gene_id and their transcripts_id.
-#         Args:
-#             gtf_file(str) : path to the .gtf file
-
-#         Returns:
-#             df_gtf(pd.DataFrame): pandas df containing having has columns
-#             gene_id and their transcripts_id.
-#         Raises:
-#             None
-#     """
-#     df_gtf = read_gtf(gtf_file)
-#     df_gtf = df_gtf.loc[df_gtf["feature"] == "transcript"]
-#     df_gtf = df_gtf[["gene_id", "transcript_id"]]
-#     df_gtf = df_gtf.rename(columns={"gene_id": "Gene",
-#                                     "transcript_id": "Transcript"})
-#     return df_gtf
-
-
-# def tsv_or_csv_to_df(input_txt: str) -> pd.DataFrame:
-#     """Convert tsv or csv file into a pandas dataframe
-
-#         Args:
-#             input_txt (str): csv or tsv file containing transcript exp level
-
-#         Returns:
-#             df_gene (str): Pandas dataframe having transcript and exp level
-#             as columns
-
-#         Raises:
-#             None
-#     """
-#     pass
-#     df_input = pd.read_csv(
-#         input_txt,
-#         sep=r"[\t,]",
-#         lineterminator="\n",
-#         names=["Transcript", "Expression_level"],
-#         engine="python",
-#     )
-#     return df_input
-
-
-# def expr_level_by_gene(
-#     df_exprTrasncript: pd.DataFrame, df_output_gtf_selection: pd.DataFrame
-# ) -> pd.DataFrame:
-#     """find the gene of each transcipt given by the expression level csv/tsv
-#     file, and summ expression level of all transcipts from the same gene.
-
-#         Args:
-#             df_expr_transcript: pandas df containing transcript and
-#             their exp level generated by "tsv_or_csv_to_df" function
-#             df_output_gtf_selection : pandas df containing genes and
-#             transcripts, generated by "transcripts_by_gene_inDf" function
-
-#         Returns:
-#             Pandas dataframe having gene and sum of its transcript exp level
-
-#         Raises:
-#             None
-#     """
-#     pass
-#     df_merged = pd.merge(
-#         df_output_gtf_selection, df_exprTrasncript,
-#         how="inner", on="Transcript"
-#     )
-#     df_sum = df_merged.groupby("Gene").sum(
-#         "Expression_level"
-#     )
-#     return df_sum
-
-
-# def match_by_gene(
-#     df_repr_transcript: pd.DataFrame,
-#     df_expression_level_by_gene: pd.DataFrame
-# ) -> pd.DataFrame:
-#     """Find matching genes bewteen the 2 args
-
-#         Args:
-#             df_repr_transcript : pandas Dataframe containing genes
-#             and their representative transcript, generated by
-#             "dict_repr_trans_to_df()"
-#             df_expression_level_by_gene : pandas Dataframe containing
-#             genes and their expression level generated by
-#             "transcript_by_gene_inDf()"
-
-#         Returns:
-#             Pandas dataframe having representative trasncripts
-#             and their expression level
-
-#         Raises:
-#             None
-#     """
-#     pass
-#     df_merged = pd.merge(
-#         df_repr_transcript, df_expression_level_by_gene,
-#         how="outer", on="Gene"
-#     )
-#     df_clean = df_merged.dropna(axis=0)
-#     df_clean = df_clean.loc[:, ["reprTrans", "Expression_level"]]
-#     return df_clean
-
-
-# # functions to run this part of the programm
-# def match_repr_transcript_expression_level(
-#     expr_trans: str, dict_repr_trans: dict, gtf_file: str,
-# ):
-#     """Combine functions to replace transcripts from exp level csv/tsv file
-#        with representative transcripts
-
-#         Args:
-#             expr_trans (str): csv or tsv file containing transcripts
-#             and their expression level
-#             dict_repr_trans (dict) : dict of genes and their
-#             representative transcipt
-#             intemediate_file (str) : txt file containing genes, transcript
-#             and their expression level from the transkript_extractor function
-#             output_path : path indicating were the tsv file should be written
-
-#         Returns:
-#             tsv file of representative trasncripts and their expression level
-
-#         Raises:
-#             None
-#     """
-#     df_gene_transcript = gene_and_transcript(gtf_file)
-#     df_expr_trans = tsv_or_csv_to_df(expr_trans)
-#     df_repr_trans = dict_repr_trans_to_df(dict_repr_trans)
-#     df_expr_level_by_gene = expr_level_by_gene(
-#         df_expr_trans, df_gene_transcript
-#         )  # error here
-#     df_match = match_by_gene(df_repr_trans, df_expr_level_by_gene)
-#     df_match.rename(columns={'reprTrans': 'id', 'Expression_level': 'level'},
-#                     inplace=True)
-#     return df_match
-
-
-# # run the program
-# if __name__ == "__main__":
-#     match_repr_transcript_expression_level()
diff --git a/transcript_sampler/poisson_sampling.py b/transcript_sampler/poisson_sampling.py
index f86e2bb22cf0c290c61d4b28a4340f195d7f51a1..0df129c1fbc688507858970bc8ca2657e8552aca 100644
--- a/transcript_sampler/poisson_sampling.py
+++ b/transcript_sampler/poisson_sampling.py
@@ -1,6 +1,6 @@
 """Sample transcripts by Poisson-sampling."""
 
-import pandas as pd
+import pandas as pd   # type: ignore
 import numpy as np
 
 
@@ -30,47 +30,3 @@ class SampleTranscript:
             "id": df_repr["id"], "count": levels
             })
         transcript_numbers.to_csv(output_csv, index=False, header=False)
-
-
-# python_version = "3.7.13"
-# module_list = [pd, np, argparse]
-# modul_name_list = ["pd", "np", "argparse"]
-
-# def transcript_sampling(total_transcript_number, df_repr, output_csv):
-#     # df = pd.read_csv(
-#     # csv_file, sep="\t", lineterminator="\n",  names=["id", "level"])
-#     # the function match_reprTranscript_expressionLevel() now outputs a df
-#     df = df_repr
-#     levels = []
-#     sums = df['level'].tolist()
-#     total = sum(sums)
-#     # I added this because writting a number in the terminal inputed a string
-#     total_transcript_number = int(total_transcript_number)
-#     normalized = total_transcript_number/total
-#     for expression_level in df['level']:
-#         poisson_sampled = np.random.poisson(expression_level*normalized)
-#         levels.append(poisson_sampled)
-
-#     transcript_numbers = pd.DataFrame({'id': df['id'], 'count': levels})
-#     pd.DataFrame.to_csv(transcript_numbers, output_csv)
-
-
-# if __name__ == '__main__':
-#     # te.version_control(module_list,modul_name_list,python_version)
-#     parser = argparse.ArgumentParser(
-#         description="Transcript Poisson sampler, csv output",
-#         formatter_class=argparse.ArgumentDefaultsHelpFormatter
-#     )
-
-#     parser.add_argument("--expression_level", required=True,
-#                         help="csv file with expression level")
-#     parser.add_argument("--output_csv", required=True,
-#                         help="output csv file")
-#     parser.add_argument("--input_csv", required=True,
-#                         help="input csv file")
-#     parser.add_argument("--transcript_number", required=True,
-#                         help="total number of transcripts to sample")
-#     args = parser.parse_args()
-
-#     transcript_sampling(args.transcript_number, args.input_csv,
-#                         args.output_csv, args.transcript_number)