{ "cells": [ { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "ename": "ModuleNotFoundError", "evalue": "No module named 'rerpresentative_v4'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m/home/laura/code/transcript-sampler/scripts/new_exe_file.ipynb Cell 1\u001b[0m in \u001b[0;36m<cell line: 7>\u001b[0;34m()\u001b[0m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/laura/code/transcript-sampler/scripts/new_exe_file.ipynb#W1sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mpoisson_sampling\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mps\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/laura/code/transcript-sampler/scripts/new_exe_file.ipynb#W1sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mwritegtf\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mgt\u001b[39;00m\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/laura/code/transcript-sampler/scripts/new_exe_file.ipynb#W1sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mmatch_reprtranscript_expressionlevel\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mma\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/laura/code/transcript-sampler/scripts/new_exe_file.ipynb#W1sZmlsZQ%3D%3D?line=9'>10</a>\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mexe\u001b[39m(input_file, csv, gtf, transcript_nr):\n\u001b[1;32m <a href='vscode-notebook-cell:/home/laura/code/transcript-sampler/scripts/new_exe_file.ipynb#W1sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m file_name,source_pathway_name_2,deposit_pathway_name_2 \u001b[39m=\u001b[39m te\u001b[39m.\u001b[39mextract_transcript(input_file, deposit_pathway_name \u001b[39m=\u001b[39m \u001b[39mTrue\u001b[39;00m, Input_free \u001b[39m=\u001b[39m Input_free)\n", "File \u001b[0;32m~/code/transcript-sampler/scripts/match_reprtranscript_expressionlevel.py:5\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mjson\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mre\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mrerpresentative_v4\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mrepr\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mos\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdict_reprTrans_to_df\u001b[39m(dict_reprTrans: \u001b[39mdict\u001b[39m):\n", "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'rerpresentative_v4'" ] } ], "source": [ "import argparse\n", "import transcript_extractor as te\n", "import exon_length_filter as elf\n", "import representative as rtcl\n", "import poisson_sampling as ps\n", "import writegtf as gt\n", "import match_reprtranscript_expressionlevel as ma\n", "\n", "\n", "def exe(input_file, csv, gtf, transcript_nr):\n", " file_name,source_pathway_name_2,deposit_pathway_name_2 = te.extract_transcript(input_file, deposit_pathway_name = True, Input_free = Input_free)\n", " inter_mediate_file_directory = input_file +\"_intermediate_file.txt\"\n", "\n", " print(\"Transcripts are filtered based on transcript score. Please wait...\")\n", "\n", " pre_filter_representative_transcripts_dict = rtcl.find_repr_by_SupportLevel(inter_mediate_file_directory)\n", "\n", " print(\"Transcripts filtered\\n\")\n", " elf.exon_length_filter(file_name,gen_dict= pre_filter_representative_transcripts_dict, Input_free = True)\n", "\n", " tsv_input = ma.output_tsv()\n", " print(\"Poisson sampling of transcripts\")\n", " ps.transcript_sampling(transcript_nr, tsv_input, csv)\n", " print(\"output csv file ready\")\n", " \n", " print(\"writing output gtf file\")\n", " gt.gtf_file_writer(input_file, csv, gtf)\n", "\n", "\n", "\n", "if __name__ == '__main__':\n", " parser = argparse.ArgumentParser(\n", " description=\"transcript sampler\",\n", " formatter_class=argparse.ArgumentDefaultsHelpFormatter\n", " )\n", " parser.add_argument(\"--annotation\", required=True, help=\"gtf file with genome annotation\")\n", " parser.add_argument(\"--output_csv\", required=True, help=\"output csv file\")\n", " parser.add_argument(\"--output_gtf\", required=True, help=\"output gtf file\")\n", " parser.add_argument(\"--transcript_number\", required=True, help=\"total number of transcripts to sample\")\n", " args = parser.parse_args()\n", " exe(args.annotation, args.output_csv, args.output_gtf, args.transcript_nr)\n", "\n", " #return(file_name,source_pathway_name,deposit_pathway_name)\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.12 ('nextstrain')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "41a54f34eee8c9e478b3404dd74579d3248e5c82a4969468d7042e338229b1fe" } } }, "nbformat": 4, "nbformat_minor": 2 }