### Made by Hugo Gillet ### import pandas as pd import os """ This part of the code take as input a gtf modified file and return a dictionary of transcripts with best support level for each gene of the input """ def import_gtfSelection_to_df(gtf_modified_file: str) -> pd.DataFrame: """Import intermediate file from gtf and create a df Args: gtf_modified_file (str) : path to the intermediate file Returns: Pandas dataframe having Gene, transcript and support level as columns Raises: TypeError : Only str path is allowed """ pass if not type(gtf_modified_file) is str: raise TypeError("Only str path is allowed") df_input = pd.read_csv( gtf_modified_file, sep="\t", lineterminator="\n", names=["Gene_mixed", "Transcript", "Support_level", "Na1", "Na2"], ) df_input["Support_level"] = df_input["Support_level"].replace(" ", "") df_input["Gene"] = df_input["Gene_mixed"].str.extract("([A-Z]\w{0,})", expand=True) df_input["Transcript_number"] = df_input["Gene_mixed"].str.extract( "(^\d)", expand=True ) df_clean = df_input.loc[:, ["Gene", "Transcript", "Support_level"]] df_clean["Gene"] = df_clean["Gene"].fillna(method="ffill") df_clean = df_clean.dropna(axis=0) return df_clean def representative_transcripts_inDict(df_gtfSelection: pd.DataFrame) -> pd.DataFrame: """Return a dict containing for each gene transcripts with highest confidence level Args: df_gtfSelection (str): Pandas dataframe having Gene, transcript and support level as columns Returns: Dict {'Gene':['transcriptA', 'transcriptB'], ...} Raises: TypeError : Only pandas DataFrame is allowed """ pass if not type(df_gtfSelection) is pd.DataFrame: raise TypeError("Only pandas DataFrame is allowed") df_min = df_gtfSelection[ df_gtfSelection["Support_level"] == df_gtfSelection.groupby("Gene")["Support_level"].transform(min) ] df_final = df_min.drop(columns=["Support_level"]) dict_representative_transcripts = ( df_final.groupby("Gene")["Transcript"].apply(list).to_dict() ) return dict_representative_transcripts def find_repr_by_SupportLevel(intermediate_file: str) -> dict[str, str]: """Combine functions import_gtfSelection_to_df() and representative_transcripts_inDict() Args: intermediate_file : path to the intermediate file Returns: Dict {'Gene':['transcriptA', 'transcriptB'], ...} Raises: None """ pass df_gtf = import_gtfSelection_to_df(intermediate_file) dict_reprTrans = representative_transcripts_inDict(df_gtf) return dict_reprTrans if __name__ == "__main__": find_repr_by_SupportLevel()