### Made by Hugo Gillet ###
import pandas as pd
import os

"""
This part of the code take as input a gtf modified file 
and return a dictionary of transcripts with best
support level for each gene of the input

"""


def import_gtfSelection_to_df(gtf_modified_file: str) -> pd.DataFrame:
    """Import intermediate file from gtf and create a df

        Args:
            gtf_modified_file (str) : path to the intermediate file

        Returns:
            Pandas dataframe having Gene, transcript 
            and support level as columns
      
        Raises:
            TypeError : Only str path is allowed
          
    """
    pass
    if not type(gtf_modified_file) is str:
        raise TypeError("Only str path is allowed")
    df_input = pd.read_csv(
        gtf_modified_file,
        sep="\t",
        lineterminator="\n",
        names=["Gene_mixed", "Transcript", "Support_level", "Na1", "Na2"],
    )
    df_input["Support_level"] = df_input["Support_level"].replace(" ", "")
    df_input["Gene"] = df_input["Gene_mixed"].str.extract("([A-Z]\w{0,})", expand=True)
    df_input["Transcript_number"] = df_input["Gene_mixed"].str.extract(
        "(^\d)", expand=True
    )
    df_clean = df_input.loc[:, ["Gene", "Transcript", "Support_level"]]
    df_clean["Gene"] = df_clean["Gene"].fillna(method="ffill")
    df_clean = df_clean.dropna(axis=0)
    return df_clean


def representative_transcripts_inDict(df_gtfSelection: pd.DataFrame) -> pd.DataFrame:
    """Return a dict containing for each gene transcripts 
        with highest confidence level

        Args:
            df_gtfSelection (str): Pandas dataframe having Gene,
            transcript and support level as columns

        Returns:
            Dict {'Gene':['transcriptA', 'transcriptB'], ...}
      
        Raises:
            TypeError : Only pandas DataFrame is allowed
    """
    pass

    if not type(df_gtfSelection) is pd.DataFrame:
        raise TypeError("Only pandas DataFrame is allowed")
    df_min = df_gtfSelection[
        df_gtfSelection["Support_level"]
        == df_gtfSelection.groupby("Gene")["Support_level"].transform(min)
    ]
    df_final = df_min.drop(columns=["Support_level"])
    dict_representative_transcripts = (
        df_final.groupby("Gene")["Transcript"].apply(list).to_dict()
    )
    return dict_representative_transcripts


def find_repr_by_SupportLevel(intermediate_file: str) -> dict[str, str]:
    """Combine functions import_gtfSelection_to_df() 
        and representative_transcripts_inDict()

        Args:
            intermediate_file : path to the intermediate file

        Returns:
            Dict {'Gene':['transcriptA', 'transcriptB'], ...}
      
        Raises:
            None

          
    """
    pass
    df_gtf = import_gtfSelection_to_df(intermediate_file)
    dict_reprTrans = representative_transcripts_inDict(df_gtf)
    return dict_reprTrans



if __name__ == "__main__":
   find_repr_by_SupportLevel()