Skip to content
Snippets Groups Projects
Commit 6e39a68e authored by Studer Gabriel's avatar Studer Gabriel
Browse files

Modelling with AFDB as template library

parent 570f0e12
No related branches found
No related tags found
No related merge requests found
Data generation for AFDB Modelling capabilities in ProMod3
Requires you to download the full proteomes database as described in
https://github.com/deepmind/alphafold/blob/main/afdb/README.md.
This gives one tar file per proteome which serves as starting point.
In case of sciCORE they're here:
`/scicore/data/managed/AF_UniProt/frozen_221115T101000/proteomes`
The `afdb_proteom_to_data_chunks.py` script generates one such chunk.
It reads a list of filenames which needs to be generated manually.
Something like:
```python
import os
files = os.listdir(<AFDB_PROTEOM_DIR>)
with open("afdb_proteom_files.txt", 'w') as fh:
fh.write('\n'.join(files))
```
`create_commands.py` generates a command file which can be submitted
as batch job. Carefully check the variables defined on top and adapt to your
needs. Test to run one of these commands interactively to see whether the
respective chunk file is created correctly before submitting.
Once all chunks are there, an indexed database can be created with:
```python
from promod3.modelling import FSStructureServer
fs_server = FSStructureServer.FromDataChunks("afdb_data_chunks", "afdb_fs")
```
## Data preparation for PentaMatch
The same data chunks are used to extract the sequences that are searched by
PentaMatch. `create_pentamatch_sequences.py` generates a Fasta file with all
sequences of the previously generated FSStructureServer. Execute with:
```bash
ost create_pentamatch_sequences.py --data_chunks <DATA_CHUNK_DIR> --fs_server <FS_SERVER> --out <PENTAMATCH>.fasta
```
The searchable PentaMatch object is generated interactively with:
```python
from promod3.modelling import PentaMatch
PentaMatch.FromSeqList("<PENTAMATCH>.fasta", "<PENTAMATCH_DIR>",
entries_from_seqnames=True)
```
Be aware that the command above requires a substantial amount of memory.
For 200e6 entries, 500GB was sufficient.
import os
import tarfile
import gzip
import argparse
import pickle
from ost import io
def parse_args():
desc = ("Parses proteom tarballs from AFDB and dumps pickle files ready "
"for database creation")
parser = argparse.ArgumentParser(description = desc)
parser.add_argument("--afdb_dir", help="Directory containing the "
"tarballs")
parser.add_argument("--tarballs", help=" File containing tarball filenames")
parser.add_argument("--start", help="idx in that file to start", type=int)
parser.add_argument("--end", help="idx in that file to end", type=int)
parser.add_argument("--out_file", help="Output file where stuff gets "
"pickled")
parser.add_argument("--ca_only", help="Whether to use CA-only "
"representation", action="store_true")
return parser.parse_args()
def iterate_proteom(tarball):
""" Helper: iterate over proteome tarball provided by EBI-AFDB
Yields mmcif data
in detail: tuple with types :class:`str`, :class:`ost.mol.EntityHandle`,
:class:`ost.io.MMFicInfo` and :class:`ost.seq.SequenceList`
:param tarball: Path to tarball to iterate
:type tarball: :class:`str`
:returns: Generator of specified tuple
"""
tf = tarfile.open(tarball)
prof = io.profiles.Get("STRICT")
# hack to correct for corrupt cif files in AFDB
corrupt_cit = "_citation.id primary"
correct_cit = "_citation.id 1"
while True:
tar_info = tf.next()
if tar_info is None:
break # we're done
if tar_info.name.endswith("cif.gz"):
fh = tf.extractfile(tar_info)
mmcif_str = gzip.decompress(fh.read()).decode("utf-8")
if corrupt_cit in mmcif_str:
mmcif_str = mmcif_str.replace(corrupt_cit, correct_cit)
ent, mmcif_info, seqres = io.MMCifStrToEntity(mmcif_str,
profile=prof,
process=True)
yield (tar_info.name, ent, mmcif_info, seqres)
def process_proteom(tarball, ca_only=False):
""" Helper: Creates list of entries for one proteom
:param tarball: Path to proteom tarball
:type tarball: :class:`str`
:ca_only: Whether to select for only CA positions
:type ca_only: :class:`bool`
:returns: :class: list of :class:`tuple` in format required by
:func:`FromDataChunks`
"""
omf_opts = io.OMFOption.DEFAULT_PEPLIB | io.OMFOption.LOSSY | \
io.OMFOption.AVG_BFACTORS | io.OMFOption.ROUND_BFACTORS | \
io.OMFOption.SKIP_SS | io.OMFOption.INFER_PEP_BONDS
entries = list()
for entry in iterate_proteom(tarball):
uniprot_ac = entry[0].split('-')[1]
fragment = entry[0].split('-')[2]
version = entry[0].split('-')[3]
version = version.split('_')[1]
version = version.split('.')[0]
ent = entry[1]
if ca_only:
ent = ent.Select("aname=CA")
ent = mol.CreateEntityFromView(ent, False)
ent_name = f"{uniprot_ac} {fragment} {version}"
ent.SetName(ent_name)
omf = io.OMF.FromMMCIF(ent, entry[2], omf_opts)
omf = gzip.compress(omf.ToBytes())
entries.append([uniprot_ac, fragment, version, omf])
return entries
def create_data_chunk(tarballs, afdb_dir, start, end, chunk_out,
ca_only=False):
""" Create full data chunk
Requires preprocessing step of creating a text file that lists all
proteom tarballs.
:param tarballs: Path to file where each line corresponds to one proteom
tarball, i.e. its filename
:type tarballs: :class:`str`
:param afdb_dir: Directory containing the tarball files specified in
*tarballs*
:type afdb_dir: :class:`str`
:param start: Start of tarball slice to be added to chunk
:type start: :class:`int`
:param end: End of tarball slice to be added to chunk (*end* won't be
added...)
:type end: :class:`str`
:param chunk_out: Chunk will be pickled to that file
:type chunk_out: :class:`str`
:ca_only: Whether to select for only CA positions
:type ca_only: :class:`bool`
"""
with open(tarballs, 'r') as fh:
tarballs = fh.readlines()
entries = list()
for tarball in tarballs[start:end]:
full_path = os.path.join(afdb_dir, tarball.strip())
entries += process_proteom(full_path, ca_only=ca_only)
with open(chunk_out, 'wb') as fh:
pickle.dump(entries, fh)
def main():
args = parse_args()
create_data_chunk(args.tarballs, args.afdb_dir, args.start, args.end,
args.out_file, ca_only = args.ca_only)
if __name__ == '__main__':
main()
import os
# path to Singularity container with recent OpenStructure installation
omf_sif = "<PATH_TO_SIF>"
# path to directory that contains AFDB - one tarball per proteom
afdb_dir = "/scicore/data/managed/AF_UniProt/frozen_221115T101000/proteomes"
# file with one proteom filename per line - in principle the content of os.listdir(afdb_dir)
proteom_file = "<WHEREVER>/afdb_proteom_files.txt"
# number of proteoms that end up in one data chunk
chunk_size = 100
# path to directory where chunks will be dumped
chunk_out_dir = "<WHEREVER>/afdb_data_chunks"
# path to script that does the job
fancy_script = "<WHEREVER>/afdb_proteom_to_data_chunks.py"
# whether structures should be reduced to CA only representation
ca_only = False
# path to file into which the commands are written
cmd_file = "allatom_commands.cmd"
with open(proteom_file, 'r') as fh:
proteom_data = fh.readlines()
N = len(proteom_data)
commands = list()
chunk_idx = 0
for i in range(0, N, chunk_size):
start = i
end = min(N, i+chunk_size)
out_file = os.path.join(chunk_out_dir, str(chunk_idx) + ".pkl")
cmd = ["singularity", "exec", "--bind", f"{afdb_dir}:{afdb_dir}",
omf_sif, "ost", fancy_script,
"--afdb_dir", afdb_dir,
"--tarballs", proteom_file,
"--start", str(start),
"--end", str(end),
"--out_file", out_file]
if ca_only:
cmd.append("--ca_only")
commands.append(' '.join(cmd))
chunk_idx += 1
with open(cmd_file, 'w') as fh:
fh.write('\n'.join(commands))
import os
import tarfile
import gzip
import argparse
import pickle
from ost import io
from promod3.modelling import FSStructureServer
def parse_args():
desc = ("Extracts sequences from pickled files generated with "
"create_fsserver_data_chunks.py and relates them to entries in an "
"FSStructureServer object. I.e. Dumps a sequence list in Fasta "
"format with entry indices as sequence names. This file serves as "
"starting point for an actual PentaMatch object. Requires faf.py "
"to be importable.")
parser = argparse.ArgumentParser(description = desc)
parser.add_argument("--data_chunks", help="Directory with all data chunks "
"generated with create_fsserver_data_chunks.py")
parser.add_argument("--fs_server", help="Directory containing the files "
"for an FSStructureServer object derived from "
"data_chunks directory")
parser.add_argument("--out", help="Outfile in Fasta format that will "
"contain all sequences with their respective index in "
"the underlying FSStructureServer object as names")
return parser.parse_args()
def main():
args = parse_args()
fs_server = FSStructureServer(args.fs_server)
chunk_files = os.listdir(args.data_chunks)
outfile = open(args.out, 'w')
for cf_idx, cf in enumerate(chunk_files):
print(f"processing chunk {cf_idx}, {cf}")
with open(os.path.join(args.data_chunks, cf), 'rb') as fh:
data = pickle.load(fh)
for entry in data:
uniprot_ac = entry[0]
fragment = entry[1]
version = entry[2]
omf_data = entry[3]
idx = fs_server.GetIdx(uniprot_ac, fragment = fragment,
version = version)
omf = io.OMF.FromBytes(gzip.decompress(omf_data))
assert(omf.GetChainNames() == ["A"])
sequence = omf.GetSequence("A")
outfile.write(f">{idx}\n")
seq_chunks = [sequence[i:i+80] for i in range(0, len(sequence), 80)]
outfile.write('\n'.join(seq_chunks))
outfile.write('\n')
outfile.close()
if __name__ == '__main__':
main()
...@@ -326,3 +326,34 @@ iteration. ...@@ -326,3 +326,34 @@ iteration.
:returns: All found matches :returns: All found matches
:rtype: :class:`list` of :class:`MotifMatch` :rtype: :class:`list` of :class:`MotifMatch`
AFDB Modelling
--------------------------------------------------------------------------------
Template based modelling using AFDB as template library comes with two
challenges for which |project| provides solutions:
* efficient structure storage for the whole AFDB: :class:`FSStructureServer`
* fast sequence searches with limited sensitivity: :class:`PentaMatch`
The creation of these two object requires extensive preprocessing. The required
scripts and documentation are available in
`<GIT_ROOT>/extras/data_generation/afdb_modelling`.
Basic modelling functionality is available in the following two functions:
* :func:`AFDBTPLSearch`
* :func:`AFDBModel`
.. autofunction:: AFDBTPLSearch
.. autofunction:: AFDBModel
.. autoclass:: FSStructureServer
:members:
:member-order: bysource
.. autoclass:: PentaMatch
:members:
:member-order: bysource
...@@ -29,6 +29,7 @@ set(MODELLING_PYMOD ...@@ -29,6 +29,7 @@ set(MODELLING_PYMOD
_alignment_fiddling.py _alignment_fiddling.py
_raw_model.py _raw_model.py
_planar_rings.py _planar_rings.py
_afdb_modelling.py
) )
pymod(NAME modelling pymod(NAME modelling
......
...@@ -28,3 +28,4 @@ from ._monte_carlo import * ...@@ -28,3 +28,4 @@ from ._monte_carlo import *
from ._mhandle_helper import * from ._mhandle_helper import *
from ._raw_model import * from ._raw_model import *
from ._planar_rings import * from ._planar_rings import *
from ._afdb_modelling import *
# Copyright (c) 2013-2023, SIB - Swiss Institute of Bioinformatics and
# Biozentrum - University of Basel
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import gzip
import mmap
import pickle
import numpy as np
import time
import tarfile
import glob
from ost import io
from ost import seq
from ._raw_model import BuildRawModel
from ._pipeline import BuildFromRawModel
from ._modelling import *
class FSStructureServer:
""" FSStructureServer - A filesystem based AFDB structure server
Stores OMF data entries in huge binary files and extracts the respective
binary data blobs with an indexing mechanism. Efficient reading of these
huge files is delegated to the OS using the Python mmap module.
Data creation happens with static Create function: :func:`FromDataChunks`.
The required preprocessing must be done with external scripts.
:param db_dir: Directory containing required files. 1) pos.dat (see
:attr:`pos`) 2) length.dat (see :attr:`length`)
3) chunk.dat (see :attr:`chunk`) 4) indexer.dat (see
:attr:`indexer`) 4) one or several files with pattern
fs_data_[x].dat (see :attr:`data`)
:type db_dir: :class:`str`
"""
def __init__(self, db_dir):
super().__init__()
self._pos = None
self._length = None
self._chunk = None
self._indexer = None
self._search_keys = None
self._data = None
self._data_fh = None
self._n_entries = None
# only check if required files are there, they're lazy loaded
self.pos_file = os.path.join(db_dir, "pos.dat")
self.length_file = os.path.join(db_dir, "length.dat")
self.chunk_file = os.path.join(db_dir, "chunk.dat")
self.search_key_file = os.path.join(db_dir, "search_keys.dat")
self.indexer_file = os.path.join(db_dir, "indexer.dat")
self.data_files = glob.glob(os.path.join(db_dir, "fs_data_*.dat"))
if not os.path.exists(self.pos_file):
raise RuntimeError(f"Exp \"pos.dat\" file in db_dir ({db_dir})")
if not os.path.exists(self.length_file):
raise RuntimeError(f"Exp \"length.dat\" file in db_dir ({db_dir})")
if not os.path.exists(self.chunk_file):
raise RuntimeError(f"Exp \"chunk.dat\" file in db_dir ({db_dir})")
if not os.path.exists(self.indexer_file):
raise RuntimeError(f"Exp \"indexer.dat\" file in db_dir ({db_dir})")
# there can be one or more data files, just check whether there is at
# least one
if len(self.data_files) == 0:
raise RuntimeError(f"Exp at least one data file in form "
f"\"fs_data_[x].dat\" in db_dir ({db_dir})")
def __del__(self):
if self._data:
for fh in self._data:
fh.close()
for fh in self._data_fh:
fh.close()
@property
def pos(self):
""" Start positions of data in internal linear memory layout
:type: :class:`np.ndarray` with dtype np.int64
"""
if self._pos is None:
with open(self.pos_file, 'rb') as fh:
self._pos = np.load(fh)
return self._pos
@property
def length(self):
""" Lengths of data in internal linear memory layout
:type: :class:`np.ndarray` with dtype np.int32
"""
if self._length is None:
with open(self.length_file, 'rb') as fh:
self._length = np.load(fh)
return self._length
@property
def chunk(self):
""" Chunk, in which entry is stored
:type: :class:`np.ndarray` with dtype np.int16
"""
if self._chunk is None:
with open(self.chunk_file, 'rb') as fh:
self._chunk = np.load(fh)
return self._chunk
@property
def indexer(self):
""" Internal data structure - Relates entries with data indices
:type: :class:`np.ndarray` with dtype np.int32
"""
if self._indexer is None:
with open(self.indexer_file, 'rb') as fh:
self._indexer = np.load(fh)
return self._indexer
@property
def search_keys(self):
""" Internal data structure - Relates entries with data indices
"""
if self._search_keys is None:
with open(self.search_key_file, 'rb') as fh:
self._search_keys = np.load(fh)
return self._search_keys
@property
def data(self):
""" Internal binary data in memory mapped files
:type: :class:`list` of :class:`mmap.mmap`
"""
if self._data is None:
self._data = list()
self._data_fh = list()
tmp = list()
for f in self.data_files:
idx = int(f.split('_')[-1].replace(".dat", ""))
tmp.append((idx, f))
tmp.sort()
sorted_data_files = [x[1] for x in tmp]
for f in sorted_data_files:
self._data_fh.append(open(f, 'r+b'))
self._data.append(mmap.mmap(self._data_fh[-1].fileno(), 0))
return self._data
@property
def n_entries(self):
""" Number of entries
:type: :class:`int`
"""
if self._n_entries is None:
self._n_entries = self.pos.shape[0]
return self._n_entries
def GetIdx(self, uniprot_ac, fragment="F1", version="v4"):
""" Get internal idx of stored data
Can be used for data retrieval with :func:`GetOMFByIdx`
:param uniprot_ac: Uniprot AC
:type uniprot_ac: :class:`str`
:param fragment: AFDB entries are potentially split to fragments
99.999% of all entries only have one fragment: F1
:type fragment: class:`str`
:param version: Version of entry
:type version: :class:`str`
:returns: Internal idx of that entry
:raises: :class:`RuntimeError` if no such entry exists
"""
if not fragment.startswith('F'):
raise RuntimeError("expect fragment to start with F")
if not version.startswith('v'):
raise RuntimeError("expect version to start with v")
search_key = CreateAFDBIdx(uniprot_ac, int(fragment[1:]),
int(version[1:]))
idx = np.searchsorted(self.search_keys, np.uint64(search_key))
if idx != len(self.indexer) and self.search_keys[idx] == search_key:
return self.indexer[idx]
raise RuntimeError(f"No entry for {uniprot_ac} {fragment} "
f"{version}")
def GetOMFByIdx(self, idx):
""" Get stored OMF data structure
:param idx: Internal index which can be derived from :func:`GetIdx`
:type idx: :class:`int`
:returns: OMF data structure of type :class:`ost.io.OMF`
:raises: :class:`RuntimeError` if *idx* is out of range
"""
if idx < 0 or idx >= self.n_entries:
raise RuntimeError(f"Invalid idx, must be in [0, {self.n_entries-1}]")
pos = self.pos[idx]
length = self.length[idx]
chunk = self.chunk[idx]
omf_data = self.data[chunk][pos:pos+length]
return io.OMF.FromBytes(gzip.decompress(omf_data))
def GetOMF(self, uniprot_ac, fragment="F1", version="v4"):
""" Get stored OMF data structure
:param uniprot_ac: Uniprot AC
:type uniprot_ac: :class:`str`
:param fragment: AFDB entries are potentially split to fragments
99.999% of all entries only have one fragment: F1
:type fragment: class:`str`
:param version: Version of entry
:type version: :class:`str`
:returns: OMF data structure of type :class:`ost.io.OMF`
:raises: :class:`RuntimeError` if no such entry exists
"""
idx = self.GetIdx(uniprot_ac, fragment = fragment, version = version)
return self.GetOMFByIdx(idx)
@staticmethod
def FromDataChunks(chunk_dir, db_dir, chunk_bytes=None):
""" Static method to create new database from preprocessed data
Data preprocessing consists of creating several data chunks that are
pickled to disk.
In detail: each chunk is a pickled file containing a list, where each
entry is a tuple with 4 elements: 1) uniprot_ac (:class:`str`)
2) fragment (:class:`str`) 3) version (:class:`str`) 4) structure data
(:class:`ost.io.OMF` object which has been written to a bytes object and
compressed with gzip)
The data itself is again stored in chunks of binary data which are
indexed.
:param chunk_dir: Path to directory containing described data chunks
:type chunk_dir: :class:`str`
:param db_dir: Output directory - Creates all files that are needed for
:class:`FSStructureServer`
:type db_dir: :class:`str`
:param chunk_bytes: Size in bytes of binary data chunks in final
database - default None: Everything ends up in one
single chunk
:type chunk_bytes: :class:`int`
:returns: :class:`FSStructureServer` with all data from *chunk_dir*
"""
if not os.path.exists(db_dir):
raise RuntimeError(f"{db_dir} does not exist")
positions = list()
lengths = list()
chunks = list()
search_keys = list()
indexer = list()
chunk_files = os.listdir(chunk_dir)
chunk_files = [f for f in chunk_files if f.endswith(".pkl")]
current_pos = 0
current_chunk = 0
current_entry = 0
data_file = open(os.path.join(db_dir, "fs_data_0.dat"), 'wb')
t0 = time.time()
for cf_idx, cf in enumerate(chunk_files):
print(f"processing chunk {cf_idx}, {cf}")
with open(os.path.join(chunk_dir, cf), 'rb') as fh:
data = pickle.load(fh)
for entry in data:
uniprot_ac = entry[0]
fragment = entry[1]
version = entry[2]
data_bytes = entry[3]
length = len(data_bytes)
data_file.write(data_bytes)
positions.append(current_pos)
lengths.append(length)
chunks.append(current_chunk)
k = CreateAFDBIdx(uniprot_ac, int(fragment[1:]),
int(version[1:]))
search_keys.append(k)
indexer.append(current_entry)
current_pos += length
current_entry += 1
if chunk_bytes and current_pos > chunk_bytes:
data_file.close()
current_chunk += 1
f = os.path.join(db_dir, f"fs_data_{current_chunk}.dat")
data_file = open(f, 'wb')
current_pos = 0
data_file.close()
print(f"done processing chunks ({round(time.time() - t0, 3)}s)")
print("sort indexer matrix")
t0 = time.time()
# make search keys searchable by bisect search => sort
search_keys = np.asarray(search_keys, dtype=np.uint64)
indexer = np.asarray(indexer, dtype=np.int32)
sort_indices = np.argsort(search_keys)
search_keys = search_keys[sort_indices]
indexer = indexer[sort_indices]
with open(os.path.join(db_dir, "search_keys.dat"), 'wb') as fh:
np.save(fh, search_keys)
with open(os.path.join(db_dir, "indexer.dat"), 'wb') as fh:
np.save(fh, indexer)
with open(os.path.join(db_dir, "pos.dat"), 'wb') as fh:
np.save(fh, np.array(positions, dtype=np.int64))
with open(os.path.join(db_dir, "length.dat"), 'wb') as fh:
np.save(fh, np.array(lengths, dtype=np.int32))
with open(os.path.join(db_dir, "chunk.dat"), 'wb') as fh:
np.save(fh, np.array(chunks, dtype=np.int16))
fs_server = FSStructureServer(db_dir)
return fs_server
class PentaMatch:
""" Pentamer matching for fast sequence searches
:class:`PentamerMatch` has fast sequence searches with low sensitivity as
use case. Specifically searching the full AFDB. Stores all unique pentamers
for each search sequence. Given a query sequence, it computes the number of
matching pentamers with respect to each search sequence and returns the top
hits.
:param db_dir: Directory containing all required files (indexer.dat,
pos.dat, length.dat, meta.dat). New :class:`PentaMatch`
objects can be derived using the static :func:`FromSeqList`
creator.
:type db_dir: :class:`str`
:raises: :class:`RuntimeError` if any required file is missing in *db_dir*
"""
def __init__(self, db_dir):
self._indexer = None
self._pos = None
self._length = None
self._N = None
self.db_dir = db_dir
# only check if required files are there, they're lazy loaded
self.indexer_file = os.path.join(db_dir, "indexer.dat")
self.pos_file = os.path.join(db_dir, "pos.dat")
self.length_file = os.path.join(db_dir, "length.dat")
self.meta_file = os.path.join(db_dir, "meta.dat")
if not os.path.exists(self.indexer_file):
raise RuntimeError(f"Exp \"indexer.dat\" file in db_dir ({db_dir})")
if not os.path.exists(self.pos_file):
raise RuntimeError(f"Exp \"pos.dat\" file in db_dir ({db_dir})")
if not os.path.exists(self.length_file):
raise RuntimeError(f"Exp \"length.dat\" file in db_dir ({db_dir})")
if not os.path.exists(self.meta_file):
raise RuntimeError(f"Exp \"meta.dat\" file in db_dir ({db_dir})")
@property
def indexer(self):
""" Entry indices for pentamers
Entry data for one pentamer can be extracted with the respective values in
:attr:`pos` and :attr:`length`
:type: memory mapped :class:`np.ndarray` of dtype np.int32
"""
if self._indexer is None:
self._indexer = np.memmap(self.indexer_file, dtype=np.int32,
mode='r')
return self._indexer
@property
def pos(self):
""" Start position for each pentamer in :attr:`indexer`
:type: :class:`np.ndarray` of dtype np.int64 with 3.2E6 entries
"""
if self._pos is None:
self._pos = np.fromfile(self.pos_file, dtype=np.int64)
return self._pos
@property
def length(self):
""" Length for each pentamer in :attr:`indexer`
:type: :class:`np.ndarray` of dtype np.int32 with 3.2E6 entries
"""
if self._length is None:
self._length = np.fromfile(self.length_file, dtype=np.int32)
return self._length
@property
def N(self):
""" Number of entries in underlying :class:`FSStructureServer`
:type: :class:`int`
"""
if self._N is None:
with open(self.meta_file, 'r') as fh:
self._N = int(fh.read()) + 1 # the files stores max idx => +1
return self._N
def TopN(self, N, sequence, return_counts=False, unique_pentamers=True):
""" Find top-N matches given *sequence*
Identifies unique pentamers in *sequence* and counts number of
occurences in each entry. Returns the top-N entries with respect
to counts.
:param N: Number of results to return
:type N: :class:`int`
:param sequence: Sequence to search
:type sequence: :class:`str`
:param return_counts: Additionally return underlying pentamer counts
:type return_counts: :class:`bool`
:param unique_pentamers: Set to True if :attr:`indexer` contains only
unique pentamers for each entry. This way we
can use faster methods to accumulate counts.
In detail: accumulator[indices] += 1 is much
faster than np.add.at(accumulator, indices, 1).
But the latter is required if there are
duplicates.
:type unique_pentamers: :class:`bool`
:returns: :class:`list` of :class:`int` with length *N*. If
*return_counts* is true, the :class:`list` contains
:class:`tuple` with two elements: 1) count 2) index.
:raises: :class:`RuntimeError` if N is invalid or sequence is shorter
than 5 characters
"""
if N <=0:
raise RuntimeError(f"N ({N}) must be larger than 0")
if N > self.N:
raise RuntimeError(f"N ({N}) larger than actual entries ({self.N})")
if len(sequence) < 5:
raise RuntimeError(f"sequence must have length >=5, got: {sequence}")
pentamers = list()
SeqToPentamerIndices(sequence, True, pentamers)
# uint16 allows for up to 65535 pentamer matches
accumulator = np.zeros(self.N, dtype=np.int32)
if unique_pentamers:
for p in pentamers:
pos = self.pos[p]
length = self.length[p]
accumulator[self.indexer[pos:pos+length]] += 1
else:
for p in pentamers:
pos = self.pos[p]
length = self.length[p]
np.add.at(accumulator, self.indexer[pos:pos+length], 1)
top_n_indices = np.argpartition(accumulator, -N)[-N:]
top_n_counts = accumulator[top_n_indices]
# top_n_indices is not sorted by counts => sort by counts and return
tmp = [(a,b) for a,b in zip(top_n_counts, top_n_indices)]
tmp.sort(reverse=True)
if return_counts:
return tmp
else:
return [x[1] for x in tmp]
@staticmethod
def FromSeqList(fasta_file, db_dir, entries_from_seqnames=False):
""" Creates PentaMatch object from Fasta file
:param fasta_file: Path to Fasta file with sequences
:type fasta_file: :class:`str`
:param db_dir: Files required for :class:`PentaMatch` will be dumped
here, will be created if non-existent.
:type db_dir: :class:`str`
:param entries_from_seqnames: If set to False, indices returned by
:func:`TopN` refer to position in
*fasta_file*. If set to True, integer
indices are parsed from sequence name.
:type entries_from_seqnames: :class:`bool`
:returns: class:`PentaMatch`
:raises: :class:`ost.Error` if *entries_from_seqnames* is True but
sequence name cannot be casted to int.
"""
slist = io.LoadSequenceList(fasta_file)
if not os.path.exists(db_dir):
os.makedirs(db_dir)
CreatePentaMatch(slist, db_dir, entries_from_seqnames)
return PentaMatch(db_dir)
def AFDBTPLSearch(fs_server, pentamatch, trg_seq, pentamatch_n = 100,
seqid_thresh = 70, tpl_n = 5):
""" Searches *tpl_n* templates in *fs_server*/*pentamatch*
Step 1: Identifies *pentamatch_n* sequences in *pentamatch* with largest
number of matching pentamers with respect to *trg_seq*.
Step 2: Generate pairwise alignments with :func:`ost.seq.alg.LocalAlign`
and only retain the ones with seqid >= *seqid_thresh*.
Step 3: Extract respective templates from *fs_server* and score them by
the sum of plDDT of aligned residues divided by *trg_seq* length.
Step 4: Return top *tpl_n* (or less)
:param fs_server: Structure database - The AFDB
:type fs_server: :class:`FSStructureServer`
:param pentamatch: Pentamatch object specific for *fs_server*
:type pentamatch: :class:`PentaMatch`
:param trg_seq: Target sequence
:type trg_seq: :class:`ost.seq.SequenceHandle`/:class:`str`
:pentamatch_n: Number of sequences that are initially searched in
*pentamatch*
:type pentamatch_n: :class:`int`
:param seqid_thresh: Sequence Identity threshold [0-100] that alignment is
considered further
:type seqid_thresh: :class:`int`
:param tpl_n: Number of templates that are finally returned based on
described scoring
:type tpl_n: :class:`int`
:returns: :class:`list` of pairs with first element being the tpl score,
the second element being a :class:`ost.seq.AlignmentHandle` with
first sequence being *trg_seq* and second sequence the hit found
in *fs_server* with structure attached.
"""
top_n = pentamatch.TopN(pentamatch_n, str(trg_seq))
if isinstance(trg_seq, str):
trg_seq = seq.CreateSequence("A", trg_seq)
tmp = list()
for idx in top_n:
omf = fs_server.GetOMFByIdx(idx)
assert(omf.GetChainNames() == ["A"])
omf_s = omf.GetSequence("A")
aln = seq.alg.LocalAlign(trg_seq, seq.CreateSequence("A", omf_s),
seq.alg.BLOSUM62)[0]
if seq.alg.SequenceIdentity(aln) >= seqid_thresh:
bfactors = omf.GetBFactors("A")
summed_bfac = 0.0
current_pos = aln.GetSequence(1).offset
for col in aln:
if col[0] != '-' and col[1] != '-':
summed_bfac += bfactors[current_pos]
if col[1] != '-':
current_pos += 1
score = summed_bfac / len(trg_seq)
tmp.append((score, aln, omf))
tmp.sort(reverse=True, key=lambda x: x[0])
return_list = list()
for item in tmp[:tpl_n]:
# the alignments are local, expand the first sequence to
# *trg_seq*, i.e. make sure that the offset is 0
aln = item[1]
if aln.GetSequence(0).offset > 0:
s1 = aln.GetSequence(0)
s2 = aln.GetSequence(1)
s1_prefix = trg_seq[:s1.offset]
s2_prefix = '-' * s1.offset
new_s1 = seq.CreateSequence(s1.name, s1_prefix + str(s1))
new_s2 = seq.CreateSequence(s2.name, s2_prefix + str(s2))
new_s2.SetOffset(s2.offset)
aln = seq.CreateAlignment(new_s1, new_s2)
aln.AttachView(1, item[2].GetAUChain("A").CreateFullView())
return_list.append((item[0], aln))
return return_list
def AFDBModel(fs_server, pentamatch, trg_seq):
""" Build model with AFDB as template library
:param fs_server: Structure database - The AFDB
:type fs_server: :class:`FSStructureServer`
:param pentamatch: Pentamatch object specific for *fs_server*
:type pentamatch: :class:`PentaMatch`
:param trg_seq: Target sequence
:type trg_seq: :class:`ost.seq.SequenceHandle`/:class:`str`
:returns: :class:`tuple` with 4 elements. 1: The model 2: The model score
based on plDDT 3: Pairwise alignment (first seq: *trg_seq*,
second seq: tpl seq) 4: Template name (formatted as
"<uniprot AC> <AFDB_fragment> <AFDB_version> <chain name>").
If no appropriate template can be found, all 4 elements are None.
"""
tpl_list = AFDBTPLSearch(fs_server, pentamatch, trg_seq, pentamatch_n = 100,
seqid_thresh=70, tpl_n = 1)
if len(tpl_list):
score = tpl_list[0][0]
aln = tpl_list[0][1]
mhandle = BuildRawModel(aln)
model = BuildFromRawModel(mhandle)
name = aln.GetSequence(1).GetAttachedView().GetName()
return (model, score, name, aln)
return (None, None, None, None)
__all__ = ('FSStructureServer', 'PentaMatch', 'AFDBTPLSearch', 'AFDBModel')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment