Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
#! /usr/local/bin/ost
"""Translate models from Edward from PDB + extra data into ModelCIF."""
# EXAMPLES for running:
"""
GT test setup:
ost scripts/translate2modelcif.py "./InputFiles/sample_files" \
"./InputFiles/ASFV-G_proteome_accessions.csv" \
--out_dir="./modelcif"
For full translation (takes ~6min on laptop):
ost scripts/translate2modelcif.py "./InputFiles/AlphaFold-RENAME" \
"./InputFiles/ASFV-G_proteome_accessions.csv" \
--out_dir="./modelcif" > script_out.txt
"""
import argparse
import datetime
import os
import sys
import gzip, shutil, zipfile
from timeit import default_timer as timer
import numpy as np
import requests
import ujson as json
import pandas as pd
import xml.dom.minidom
import ihm
import ihm.citations
import modelcif
import modelcif.associated
import modelcif.dumper
import modelcif.model
import modelcif.protocol
import modelcif.reference
from ost import io
def _parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description=__doc__,
)
parser.add_argument(
"model_dir",
type=str,
metavar="<MODEL DIR>",
help="Directory with model(s) to be translated.",
)
parser.add_argument(
"metadata_file",
type=str,
metavar="<METADATA FILE>",
help="Path to CSV file with metadata.",
)
parser.add_argument(
"--out_dir",
type=str,
metavar="<OUTPUT DIR>",
default="",
help="Path to separate path to store results " \
"(model_dir used, if none given).",
)
parser.add_argument(
"--compress",
default=False,
action="store_true",
help="Compress ModelCIF file with gzip " \
"(note that QA file is zipped either way).",
)
opts = parser.parse_args()
# check that model dir exists
if opts.model_dir.endswith("/"):
opts.model_dir = opts.model_dir[:-1]
if not os.path.exists(opts.model_dir):
_abort_msg(f"Model directory '{opts.model_dir}' does not exist.")
if not os.path.isdir(opts.model_dir):
_abort_msg(f"Path '{opts.model_dir}' does not point to a directory.")
# check metadata_file
if not os.path.exists(opts.metadata_file):
_abort_msg(f"Metadata file '{opts.metadata_file}' does not exist.")
if not os.path.isfile(opts.metadata_file):
_abort_msg(f"Path '{opts.metadata_file}' does not point to a file.")
# check out_dir
if not opts.out_dir:
opts.out_dir = opts.model_dir
else:
if not os.path.exists(opts.out_dir):
_abort_msg(f"Output directory '{opts.out_dir}' does not exist.")
if not os.path.isdir(opts.out_dir):
_abort_msg(f"Path '{opts.out_dir}' does not point to a directory.")
return opts
# pylint: disable=too-few-public-methods
class _GlobalPLDDT(modelcif.qa_metric.Global, modelcif.qa_metric.PLDDT):
"""Predicted accuracy according to the CA-only lDDT in [0,100]"""
name = "pLDDT"
software = None
class _LocalPLDDT(modelcif.qa_metric.Local, modelcif.qa_metric.PLDDT):
"""Predicted accuracy according to the CA-only lDDT in [0,100]"""
name = "pLDDT"
software = None
class _NcbiTrgRef(modelcif.reference.TargetReference):
"""NCBI as target reference."""
name = "NCBI"
other_details = None
# pylint: enable=too-few-public-methods
class _OST2ModelCIF(modelcif.model.AbInitioModel):
"""Map OST entity elements to ihm.model"""
def __init__(self, *args, **kwargs):
"""Initialise a model"""
self.ost_entity = kwargs.pop("ost_entity")
self.asym = kwargs.pop("asym")
# fetch plddts per atom and per residue
self.plddt_entity = kwargs.pop("plddt_entity")
if self.plddt_entity:
bf_ent = self.plddt_entity
else:
bf_ent = self.ost_entity
self.plddts = []
self.atm_bfactors = {}
for a in bf_ent.atoms:
res_idx = a.residue.number.num - 1
assert res_idx <= len(self.plddts)
if res_idx < len(self.plddts):
assert a.b_factor == self.plddts[res_idx]
else:
self.plddts.append(a.b_factor)
self.atm_bfactors[a.qualified_name] = a.b_factor
super().__init__(*args, **kwargs)
def get_atoms(self):
# ToDo [internal]: Take B-factor out since its not a B-factor?
for atm in self.ost_entity.atoms:
if self.plddt_entity:
b_factor = self.atm_bfactors[atm.qualified_name]
else:
b_factor = atm.b_factor
yield modelcif.model.Atom(
asym_unit=self.asym[atm.chain.name],
seq_id=atm.residue.number.num,
atom_id=atm.name,
type_symbol=atm.element,
x=atm.pos[0],
y=atm.pos[1],
z=atm.pos[2],
het=atm.is_hetatom,
biso=b_factor,
occupancy=atm.occupancy,
)
def add_scores(self):
"""Add QA metrics from AF2 scores."""
# global scores
self.qa_metrics.append(
_GlobalPLDDT(np.mean(self.plddts))
)
# local scores
i = 0
for chn_i in self.ost_entity.chains:
for res_i in chn_i.residues:
# local pLDDT
self.qa_metrics.append(
_LocalPLDDT(
self.asym[chn_i.name].residue(res_i.number.num),
self.plddts[i],
)
)
i += 1
def _abort_msg(msg, exit_code=1):
"""Write error message and exit with exit_code."""
print(f"{msg}\nAborting.", file=sys.stderr)
sys.exit(exit_code)
def _check_file(file_path):
"""Make sure a file exists and is actually a file."""
if not os.path.exists(file_path):
_abort_msg(f"File not found: '{file_path}'.")
if not os.path.isfile(file_path):
_abort_msg(f"File path does not point to file: '{file_path}'.")
def _get_audit_authors():
"""Return the list of authors that produced this model."""
return (
"Spinard, Edward",
"Azzinaro, Paul",
"Rai, Ayushi",
"Espinoza, Nallely",
"Ramirez-Medina, Elizabeth",
"Valladares, Alyssa",
"Borca, Manuel",
"Gladue, Douglas"
)
def _get_metadata(metadata_file):
"""Read csv file with metedata and prepare for next steps."""
metadata = pd.read_csv(metadata_file)
# make sure protein and PDB names are unique
assert len(set(metadata.Protein)) == metadata.shape[0]
assert len(set(metadata["Associated PDB"])) == metadata.shape[0]
return metadata.set_index("Protein")
def _get_config(is_special=False):
"""Define AF setup (special case QP509L run with other settings)."""
if is_special:
description = "Model generated using the AlphaFold (v2.1.0) " \
"colab notebook producing 5 models with 3 recycles " \
"each, without model relaxation, without templates, " \
"ranked by pLDDT, starting from an MSA with " \
"reduced_dbs setting."
description2 = "The unrelaxed model was minimized and subjected to " \
"molecular dynamics for 1 ns using GROMACS."
descriptions = [description, description2]
af_config = {
"db_preset": "reduced_dbs",
"run_relax": False
}
else:
description = "Model generated using AlphaFold (v2.2.0) " \
"producing 5 models with 3 recycles each, with AMBER " \
"relaxation, using templates, ranked by pLDDT, " \
"starting from an MSA with full_dbs setting."
descriptions = [description]
af_config = {
"model_preset": "monomer",
"db_preset": "full_dbs",
"use_gpu_relax": True,
"max_template_date": "2020-05-14",
}
return {
"af_config": af_config,
"af_version": "2.1.0" if is_special else "2.2.0",
"descriptions": descriptions,
"has_gromacs_step": is_special,
"use_templates": not is_special,
"use_small_bfd": is_special
}
def _get_protocol_steps_and_software(config_data):
"""Create the list of protocol steps with software and parameters used."""
protocol = []
# modelling step
step = {
"method_type": "modeling",
"name": None,
"details": config_data["descriptions"][0],
}
# get input data
# Must refer to data already in the JSON, so we try keywords
step["input"] = "target_sequences"
# get output data
# Must refer to existing data, so we try keywords
step["output"] = "model"
# get software
step["software"] = [
{
"name": "AlphaFold",
"classification": "model building",
"description": "Structure prediction",
"citation": ihm.citations.alphafold2,
"location": "https://github.com/deepmind/alphafold",
"type": "package",
"version": config_data["af_version"],
}]
step["software_parameters"] = config_data["af_config"]
protocol.append(step)
# GROMACS step
if config_data["has_gromacs_step"]:
step = {
"method_type": "model refinement",
"name": None,
"details": config_data["descriptions"][1],
}
step["input"] = "model"
step["output"] = "model"
step["software"] = [
{
"name": "GROMACS",
"classification": "refinement",
"description": "Model relaxation",
"citation": ihm.Citation(
pmid=None,
title="GROMACS: High performance molecular simulations "
+ "through multi-level parallelism from laptops to "
+ "supercomputers.",
journal="SoftwareX",
volume=1,
page_range=(19, 25),
year=2015,
authors=[
"Abraham, M.J.",
"Murtola, T.",
"Schulz, R.",
"Pall, S.",
"Smith, J.C.",
"Hess, B.",
"Lindahl, E."
],
doi="10.1016/j.softx.2015.06.001",
),
"location": "https://www.gromacs.org",
"type": "package",
"version": None,
}]
step["software_parameters"] = {}
protocol.append(step)
return protocol
def _get_title(mdl_title):
"""Get a title for this modelling experiment."""
return f"AlphaFold model for {mdl_title}"
def _get_model_details(mdl_descs, mdl_notes):
"""Get the model description."""
mdl_desc = '\n'.join(mdl_descs)
if type(mdl_notes) == str:
# fix typos...
mdl_notes = mdl_notes.replace("hypthetical", "hypothetical") \
.replace("Uniport", "UniProt") \
.replace("Uniprot", "UniProt") \
.replace("Mislabled", "mislabeled")
#
return f"{mdl_desc}\n\nNote: {mdl_notes}."
else:
return mdl_desc
def _get_model_group_name():
"""Get a name for a model group."""
return None
def _get_sequence(chn):
"""Get the sequence out of an OST chain."""
# initialise
lst_rn = chn.residues[0].number.num
idx = 1
sqe = chn.residues[0].one_letter_code
if lst_rn != 1:
sqe = "-"
idx = 0
for res in chn.residues[idx:]:
lst_rn += 1
while lst_rn != res.number.num:
sqe += "-"
lst_rn += 1
sqe += res.one_letter_code
return sqe
def _check_sequence(up_ac, sequence):
"""Verify sequence to only contain standard olc."""
for res in sequence:
if res not in "ACDEFGHIKLMNPQRSTVWY":
raise RuntimeError(
"Non-standard aa found in UniProtKB sequence "
+ f"for entry '{up_ac}': {res}"
)
def _fetch_upkb_entry(up_ac):
"""Fetch data for an UniProtKB entry."""
# This is a simple parser for UniProtKB txt format, instead of breaking it up
# into multiple functions, we just allow many many branches & statements,
# here.
# pylint: disable=too-many-branches,too-many-statements
data = {}
data["up_organism"] = ""
data["up_sequence"] = ""
data["up_ac"] = up_ac
rspns = requests.get(f"https://www.uniprot.org/uniprot/{up_ac}.txt")
for line in rspns.iter_lines(decode_unicode=True):
if line.startswith("ID "):
sline = line.split()
if len(sline) != 5:
_abort_msg(f"Unusual UniProtKB ID line found:\n'{line}'")
data["up_id"] = sline[1]
elif line.startswith("OX NCBI_TaxID="):
# Following strictly the UniProtKB format: 'OX NCBI_TaxID=<ID>;'
data["up_ncbi_taxid"] = line[len("OX NCBI_TaxID=") : -1]
data["up_ncbi_taxid"] = data["up_ncbi_taxid"].split("{")[0].strip()
elif line.startswith("OS "):
if line[-1] == ".":
data["up_organism"] += line[len("OS ") : -1]
else:
data["up_organism"] += line[len("OS ") : -1] + " "
elif line.startswith("SQ "):
sline = line.split()
if len(sline) != 8:
_abort_msg(f"Unusual UniProtKB SQ line found:\n'{line}'")
data["up_seqlen"] = int(sline[2])
data["up_crc64"] = sline[6]
elif line.startswith(" "):
sline = line.split()
if len(sline) > 6:
_abort_msg(
"Unusual UniProtKB sequence data line "
+ f"found:\n'{line}'"
)
data["up_sequence"] += "".join(sline)
elif line.startswith("RP "):
if "ISOFORM" in line.upper():
RuntimeError(
f"First ISOFORM found for '{up_ac}', needs " + "handling."
)
elif line.startswith("DT "):
# 2012-10-03
dt_flds = line[len("DT ") :].split(", ")
if dt_flds[1].upper().startswith("SEQUENCE VERSION "):
data["up_last_mod"] = datetime.datetime.strptime(
dt_flds[0], "%d-%b-%Y"
)
elif line.startswith("GN Name="):
data["up_gn"] = line[len("GN Name=") :].split(";")[0]
data["up_gn"] = data["up_gn"].split("{")[0].strip()
# we have not seen isoforms in the data set, yet, so we just set them to '.'
data["up_isoform"] = None
if "up_gn" not in data:
_abort_msg(f"No gene name found for UniProtKB entry '{up_ac}'.")
if "up_last_mod" not in data:
_abort_msg(f"No sequence version found for UniProtKB entry '{up_ac}'.")
if "up_crc64" not in data:
_abort_msg(f"No CRC64 value found for UniProtKB entry '{up_ac}'.")
if len(data["up_sequence"]) == 0:
_abort_msg(f"No sequence found for UniProtKB entry '{up_ac}'.")
# check that sequence length and CRC64 is correct
if data["up_seqlen"] != len(data["up_sequence"]):
_abort_msg(
"Sequence length of SQ line and sequence data differ for "
+ f"UniProtKB entry '{up_ac}': {data['up_seqlen']} != "
+ f"{len(data['up_sequence'])}"
)
_check_sequence(data["up_ac"], data["up_sequence"])
if "up_id" not in data:
_abort_msg(f"No ID found for UniProtKB entry '{up_ac}'.")
if "up_ncbi_taxid" not in data:
_abort_msg(f"No NCBI taxonomy ID found for UniProtKB entry '{up_ac}'.")
if len(data["up_organism"]) == 0:
_abort_msg(f"No organism species found for UniProtKB entry '{up_ac}'.")
return data
def _check_subset(s1, s2):
# check if s2 is uniquely contained in s1
# (and if so, returns values for seq_db_align_begin & seq_db_align_end)
if s1.count(s2) == 1:
align_begin = s1.find(s2) + 1
align_end = align_begin + len(s2) - 1
return align_begin, align_end
else:
return None
def _get_ncbi_sequence(ncbi_ac):
"""Fetch OST sequence object from NCBI web service."""
# src: https://www.ncbi.nlm.nih.gov/books/NBK25500/#_chapter1_Downloading_Full_Records_
rspns = requests.get(f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/" \
f"efetch.fcgi?db=protein&id={ncbi_ac}" \
f"&rettype=fasta&retmode=text")
return io.SequenceFromString(rspns.text, "fasta")
def _get_ncbi_info(ncbi_ac):
"""Fetch dict with info from NCBI web service."""
# src: https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESummary
rspns = requests.get(f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/" \
f"esummary.fcgi?db=protein&id={ncbi_ac}")
dom = xml.dom.minidom.parseString(rspns.text)
docsums = dom.getElementsByTagName("DocSum")
assert len(docsums) == 1
docsum = docsums[0]
ncbi_dict = {}
for cn in docsum.childNodes:
if cn.nodeName == "Item":
cn_name = cn.getAttribute("Name")
cn_type = cn.getAttribute("Type")
if cn.childNodes:
d = cn.childNodes[0].data
if cn_type == "String":
ncbi_dict[cn_name] = d
elif cn_type == "Integer":
ncbi_dict[cn_name] = int(d)
else:
raise RuntimeError(f"Unknown type {cn_type} for {ncbi_ac}")
else:
ncbi_dict[cn_name] = None
return ncbi_dict
def _get_entities(pdb_file, mdl_title, up_ac, ncbi_ac):
"""Gather data for the mmCIF (target) entities."""
ost_ent = io.LoadPDB(pdb_file)
# sanity checks
if ost_ent.chain_count != 1:
raise RuntimeError(
f"Unexpected oligomer for {mdl_title}"
)
chn = ost_ent.chains[0]
sqe = _get_sequence(chn)
cif_ent = {
"pdb_sequence": sqe,
"pdb_chain_id": chn.name,
"description": f"{mdl_title} protein"
}
# add UniProtKB info
up_info = _fetch_upkb_entry(up_ac)
cif_ent.update(up_info)
if up_info["up_sequence"] != sqe:
up_range = _check_subset(up_info["up_sequence"], sqe)
if not up_range:
raise RuntimeError(f"Inconsistent UP/PDB sequences for {mdl_title}")
else:
up_range = (1, cif_ent["up_seqlen"])
cif_ent["up_range"] = up_range
# check NCBI sequence
s_ncbi = _get_ncbi_sequence(ncbi_ac)
if up_info["up_sequence"] != str(s_ncbi):
raise RuntimeError(f"Inconsistent UP/NCBI sequences for {mdl_title}")
# add NCBI info
ncbi_info = _get_ncbi_info(ncbi_ac)
if up_info["up_ncbi_taxid"] != str(ncbi_info["TaxId"]):
raise RuntimeError(f"Inconsistent UP/NCBI taxid for {mdl_title}")
if ncbi_info["Status"] != "live":
raise RuntimeError(f"NCBI entry {ncbi_ac} for {mdl_title} not live")
if ncbi_info["ReplacedBy"]:
raise RuntimeError(f"Outdated NCBI entry {ncbi_ac} for {mdl_title}")
if ncbi_info["AccessionVersion"] != ncbi_ac:
raise RuntimeError(f"NCBI AC is not AC for {mdl_title}")
cif_ent["ncbi_ac"] = ncbi_ac
cif_ent["ncbi_gi"] = str(ncbi_info["Gi"])
cif_ent["ncbi_last_mod"] = datetime.datetime.strptime(
ncbi_info["UpdateDate"], "%Y/%m/%d"
)
return [cif_ent], ost_ent
def _get_modelcif_entities(target_ents, source, asym_units, system):
"""Create ModelCIF entities and asymmetric units."""
for cif_ent in target_ents:
mdlcif_ent = modelcif.Entity(
cif_ent["pdb_sequence"],
description=cif_ent["description"],
source=source,
references=[
modelcif.reference.UniProt(
cif_ent["up_id"],
cif_ent["up_ac"],
align_begin=cif_ent["up_range"][0],
align_end=cif_ent["up_range"][1],
isoform=cif_ent["up_isoform"],
ncbi_taxonomy_id=cif_ent["up_ncbi_taxid"],
organism_scientific=cif_ent["up_organism"],
sequence_version_date=cif_ent["up_last_mod"],
sequence_crc64=cif_ent["up_crc64"],
),
# NOTE: assume that UP and NCBI match on most things
_NcbiTrgRef(
cif_ent["ncbi_gi"],
cif_ent["ncbi_ac"],
align_begin=cif_ent["up_range"][0],
align_end=cif_ent["up_range"][1],
ncbi_taxonomy_id=cif_ent["up_ncbi_taxid"],
organism_scientific=cif_ent["up_organism"],
sequence_version_date=cif_ent["ncbi_last_mod"]
)
],
)
asym_units[cif_ent["pdb_chain_id"]] = modelcif.AsymUnit(
mdlcif_ent
)
system.target_entities.append(mdlcif_ent)
def _assemble_modelcif_software(soft_dict):
"""Create a modelcif.Software instance from dictionary."""
return modelcif.Software(
soft_dict["name"],
soft_dict["classification"],
soft_dict["description"],
soft_dict["location"],
soft_dict["type"],
soft_dict["version"],
citation=soft_dict["citation"]
)
def _get_sequence_dbs(config_data):
"""Get AF seq. DBs."""
# hard coded UniProt release
up_version = "2022_01"
up_rel_date = datetime.datetime(2022, 2, 23)
# fill list of DBs
seq_dbs = []
if config_data["use_small_bfd"]:
seq_dbs.append(modelcif.ReferenceDatabase(
"Reduced BFD",
"https://storage.googleapis.com/alphafold-databases/"
+ "reduced_dbs/bfd-first_non_consensus_sequences.fasta.gz"
))
else:
seq_dbs.append(modelcif.ReferenceDatabase(
"BFD",
"https://storage.googleapis.com/alphafold-databases/"
+ "casp14_versions/"
+ "bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt.tar.gz",
version="6a634dc6eb105c2e9b4cba7bbae93412",
))
seq_dbs.append(modelcif.ReferenceDatabase(
"MGnify",
"https://storage.googleapis.com/alphafold-databases/"
+ "casp14_versions/mgy_clusters_2018_12.fa.gz",
version="2018_12",
release_date=datetime.datetime(2018, 12, 6),
))
seq_dbs.append(modelcif.ReferenceDatabase(
"Uniclust30",
"https://storage.googleapis.com/alphafold-databases/"
+ "casp14_versions/uniclust30_2018_08_hhsuite.tar.gz",
version="2018_08",
release_date=None,
))
seq_dbs.append(modelcif.ReferenceDatabase(
"TrEMBL",
"ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_release/"
+ "knowledgebase/complete/uniprot_trembl.fasta.gz",
version=up_version,
release_date=up_rel_date,
))
seq_dbs.append(modelcif.ReferenceDatabase(
"Swiss-Prot",
"ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_release/"
+ "knowledgebase/complete/uniprot_sprot.fasta.gz",
version=up_version,
release_date=up_rel_date,
))
seq_dbs.append(modelcif.ReferenceDatabase(
"UniRef90",
"ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/"
+ "uniref90.fasta.gz",
version=up_version,
release_date=up_rel_date,
))
if config_data["use_templates"]:
seq_dbs.append(modelcif.ReferenceDatabase(
"PDB70",
"http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/"
+ "hhsuite_dbs/old-releases/pdb70_from_mmcif_200401.tar.gz",
release_date=datetime.datetime(2020, 4, 1)
))
return seq_dbs
def _get_modelcif_protocol(protocol_steps, target_entities, model, ref_dbs):
"""Create the protocol for the ModelCIF file."""
protocol = modelcif.protocol.Protocol()
for js_step in protocol_steps:
sftwre = None
if js_step["software"]:
if len(js_step["software"]) == 1:
sftwre = _assemble_modelcif_software(js_step["software"][0])
else:
sftwre = []
for sft in js_step["software"]:
sftwre.append(_assemble_modelcif_software(sft))
sftwre = modelcif.SoftwareGroup(elements=sftwre)
if js_step["software_parameters"]:
params = []
for k, v in js_step["software_parameters"].items():
params.append(
modelcif.SoftwareParameter(k, v)
)
if isinstance(sftwre, modelcif.SoftwareGroup):
sftwre.parameters = params
else:
sftwre = modelcif.SoftwareGroup(
elements=(sftwre,), parameters=params
)
if js_step["input"] == "target_sequences":
input_data = modelcif.data.DataGroup(target_entities)
input_data.extend(ref_dbs)
elif js_step["input"] == "model":
input_data = model
else:
raise RuntimeError(f"Unknown protocol input: '{js_step['input']}'")
if js_step["output"] == "model":
output_data = model
else:
raise RuntimeError(
f"Unknown protocol output: '{js_step['output']}'"
)
protocol.steps.append(
modelcif.protocol.Step(
input_data=input_data,
output_data=output_data,
name=js_step["name"],
details=js_step["details"],
software=sftwre,
)
)
protocol.steps[-1].method_type = js_step["method_type"]
return protocol
def _compress_cif_file(cif_file):
"""Compress cif file and delete original."""
with open(cif_file, 'rb') as f_in:
with gzip.open(cif_file + '.gz', 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
os.remove(cif_file)
def _store_as_modelcif(data_json, ost_ent, plddt_entity, out_dir, mdl_name,
compress):
"""Mix all the data into a ModelCIF file."""
print(" generating ModelCIF objects...", end="")
pstart = timer()
# create system to gather all the data
system = modelcif.System(
title=data_json["title"],
id=mdl_name.replace(' ', '_').upper(),
model_details=data_json["model_details"],
)
# create target entities, references, source, asymmetric units & assembly
# for source we assume all chains come from the same taxon
source = ihm.source.Natural(
ncbi_taxonomy_id=data_json["target_entities"][0]["up_ncbi_taxid"],
scientific_name=data_json["target_entities"][0]["up_organism"],
)
# create an asymmetric unit and an entity per target sequence
asym_units = {}
_get_modelcif_entities(
data_json["target_entities"], source, asym_units, system
)
assembly = modelcif.Assembly(
asym_units.values()
)
# audit_authors
system.authors.extend(data_json["audit_authors"])
# set up the model to produce coordinates
if data_json['mdl_num']:
mdl_list_name = f"Model {data_json['mdl_num']} (top ranked model)"
else:
mdl_list_name = "Top ranked model"
model = _OST2ModelCIF(
assembly=assembly,
asym=asym_units,
ost_entity=ost_ent,
plddt_entity=plddt_entity,
name=mdl_list_name,
)
print(f" ({timer()-pstart:.2f}s)")
print(" processing QA scores...", end="", flush=True)
pstart = timer()
model.add_scores()
print(f" ({timer()-pstart:.2f}s)")
model_group = modelcif.model.ModelGroup(
[model], name=data_json["model_group_name"]
)
system.model_groups.append(model_group)
ref_dbs = _get_sequence_dbs(data_json["config_data"])
protocol = _get_modelcif_protocol(
data_json["protocol"], system.target_entities, model, ref_dbs
)
system.protocols.append(protocol)
# write modelcif System to file (NOTE: no PAE here!)
print(" write to disk...", end="", flush=True)
pstart = timer()
out_path = os.path.join(out_dir, f"{mdl_name}.cif")
with open(out_path, "w", encoding="ascii") as mmcif_fh:
modelcif.dumper.write(mmcif_fh, [system])
if compress:
_compress_cif_file(out_path)
print(f" ({timer()-pstart:.2f}s)")
def _create_json(config_data):
"""Create a dictionary (mimicking JSON) that contains data which is the same
for all models."""
data = {}
data["audit_authors"] = _get_audit_authors()
data["protocol"] = _get_protocol_steps_and_software(config_data)
data["config_data"] = config_data
return data
def _create_model_json(data, pdb_file, md_row):
"""Create a dictionary (mimicking JSON) that contains all the data."""
data["target_entities"], ost_ent = _get_entities(
pdb_file, data["mdl_title"], md_row["UniProt_ID"],
md_row["NCBI_Accession"]
)
data["title"] = _get_title(data["mdl_title"])
data["model_details"] = _get_model_details(
data["config_data"]["descriptions"], md_row["notes"]
)
data["model_group_name"] = _get_model_group_name()
return ost_ent
def _is_special(file_prfx):
"""Check if there is an unrelaxed file."""
# if special case, we need separate file to fetch pLDDT and add extra
# GROMACS step to protocol
plddt_path = f"{file_prfx}-unrelaxed.pdb"
if os.path.exists(plddt_path):
return plddt_path, True
else:
return None, False
def _get_mdl_num(mdl_id):
"""Fetch model number from filename used by AF."""
# mdl_id example model_4_pred_0 -> fetch 4
mdl_num = None
if type(mdl_id) == str:
mdl_id_split = mdl_id.split('_')
if len(mdl_id_split) == 4:
mdl_num = int(mdl_id_split[1])
return mdl_num
def _main():
"""Run as script."""
opts = _parse_args()
# parse/fetch global data
metadata = _get_metadata(opts.metadata_file)
if opts.compress:
cifext = "cif.gz"
else:
cifext = "cif"
# get on with models
print(f"Working on {opts.model_dir}...")
# iterate model directory
for fle in sorted(os.listdir(opts.model_dir)):
# iterate PDB files
if not fle.endswith(".pdb"):
continue
# check file and if to be done
mdl_name = os.path.splitext(fle)[0]
if mdl_name not in metadata.index:
# skip unknown ones
continue
md_row = metadata.loc[mdl_name]
assert md_row["Associated PDB"] == fle
file_prfx = os.path.join(opts.model_dir, mdl_name)
fle = os.path.join(opts.model_dir, fle)
if os.path.exists(os.path.join(opts.out_dir, f"{mdl_name}.{cifext}")):
print(f" {mdl_name} already done...")
continue
# go for it
print(f" translating {mdl_name}...")
pdb_start = timer()
plddt_path, is_special = _is_special(file_prfx)
config_data = _get_config(is_special)
mdlcf_json = _create_json(config_data)
mdlcf_json["mdl_title"] = md_row["_struct.title "]
mdlcf_json["mdl_num"] = _get_mdl_num(md_row["ranking debugg model ID"])
# gather data into JSON-like structure
print(" preparing data...", end="")
pstart = timer()
ost_ent = _create_model_json(mdlcf_json, fle, md_row)
if is_special:
plddt_entity = io.LoadPDB(plddt_path)
else:
plddt_entity = None
print(f" ({timer()-pstart:.2f}s)")
_store_as_modelcif(mdlcf_json, ost_ent, plddt_entity, opts.out_dir,
mdl_name, opts.compress)
print(f" ... done with {mdl_name} ({timer()-pdb_start:.2f}s).")
# check if result can be read and has expected seq.
ent = io.LoadMMCIF(os.path.join(opts.out_dir, f"{mdl_name}.{cifext}"))
assert ent.chain_count == 1, f"Bad chain count {mdl_name}"
ent_seq = "".join(res.one_letter_code for res in ent.residues)
up_range = mdlcf_json["target_entities"][0]["up_range"]
exp_seq = mdlcf_json["target_entities"][0]["up_sequence"]
exp_seq = exp_seq[up_range[0]-1:up_range[1]]
assert ent_seq == exp_seq, f"Bad seq. {mdl_name}"
print(f"... done with {opts.model_dir}.")
if __name__ == "__main__":
_main()