Skip to content
Snippets Groups Projects
Select Git revision
  • 3d9170fabab4dda981ad651862d780b5e2d2e4cd
  • master default protected
  • develop protected
  • cmake_boost_refactor
  • ubuntu_ci
  • mmtf
  • non-orthogonal-maps
  • no_boost_filesystem
  • data_viewer
  • 2.11.1
  • 2.11.0
  • 2.10.0
  • 2.9.3
  • 2.9.2
  • 2.9.1
  • 2.9.0
  • 2.8.0
  • 2.7.0
  • 2.6.1
  • 2.6.0
  • 2.6.0-rc4
  • 2.6.0-rc3
  • 2.6.0-rc2
  • 2.6.0-rc
  • 2.5.0
  • 2.5.0-rc2
  • 2.5.0-rc
  • 2.4.0
  • 2.4.0-rc2
29 results

python_completer.cc

Blame
  • qsscoring.py NaN GiB
    """
    Scoring of quaternary structures (QS). The QS scoring is according to the paper
    by `Bertoni et al. <https://dx.doi.org/10.1038/s41598-017-09654-8>`_.
    
    .. note ::
    
      Requirements for use:
    
      - A default :class:`compound library <ost.conop.CompoundLib>` must be defined
        and accessible via :func:`~ost.conop.GetDefaultLib`. This is set by default
        when executing scripts with ``ost``. Otherwise, you must set this with
        :func:`~ost.conop.SetDefaultLib`.
      - ClustalW must be installed (unless you provide chain mappings)
      - Python modules `numpy` and `scipy` must be installed and available
        (e.g. use ``pip install scipy numpy``)
    """
    # Original authors: Gerardo Tauriello, Martino Bertoni
    
    from ost import mol, geom, conop, seq, settings, PushVerbosityLevel
    from ost import LogError, LogWarning, LogScript, LogInfo, LogVerbose, LogDebug
    from ost.bindings.clustalw import ClustalW
    from ost.mol.alg import lddt
    from ost.seq.alg.renumber import Renumber
    import numpy as np
    from scipy.special import factorial
    from scipy.special import binom
    from scipy.cluster.hierarchy import fclusterdata
    import itertools
    
    ###############################################################################
    # QS scoring
    ###############################################################################
    
    class QSscoreError(Exception):
      """Exception to be raised for "acceptable" exceptions in QS scoring.
    
      Those are cases we might want to capture for default behavior.
      """
      pass
    
    class QSscorer:
      """Object to compute QS scores.
    
      Simple usage without any precomputed contacts, symmetries and mappings:
    
      .. code-block:: python
    
        import ost
        from ost.mol.alg import qsscoring
    
        # load two biounits to compare
        ent_full = ost.io.LoadPDB('3ia3', remote=True)
        ent_1 = ent_full.Select('cname=A,D')
        ent_2 = ent_full.Select('cname=B,C')
        # get score
        ost.PushVerbosityLevel(3)
        try:
          qs_scorer = qsscoring.QSscorer(ent_1, ent_2)
          ost.LogScript('QSscore:', str(qs_scorer.global_score))
          ost.LogScript('Chain mapping used:', str(qs_scorer.chain_mapping))
          # commonly you want the QS global score as output
          qs_score = qs_scorer.global_score
        except qsscoring.QSscoreError as ex:
          # default handling: report failure and set score to 0
          ost.LogError('QSscore failed:', str(ex))
          qs_score = 0
    
      For maximal performance when computing QS scores of the same entity with many
      others, it is advisable to construct and reuse :class:`QSscoreEntity` objects.
    
      Any known / precomputed information can be filled into the appropriate
      attribute here (no checks done!). Otherwise most quantities are computed on
      first access and cached (lazy evaluation). Setters are provided to set values
      with extra checks (e.g. :func:`SetSymmetries`).
    
      All necessary seq. alignments are done by global BLOSUM62-based alignment. A
      multiple sequence alignment is performed with ClustalW unless
      :attr:`chain_mapping` is provided manually. You will need to have an
      executable ``clustalw`` or ``clustalw2`` in your ``PATH`` or you must set
      :attr:`clustalw_bin` accordingly. Otherwise an exception
      (:class:`ost.settings.FileNotFound`) is thrown.
    
      Formulas for QS scores:
    
      ::
      
        - QS_best = weighted_scores / (weight_sum + weight_extra_mapped)
        - QS_global = weighted_scores / (weight_sum + weight_extra_all)
        -> weighted_scores = sum(w(min(d1,d2)) * (1 - abs(d1-d2)/12)) for shared
        -> weight_sum = sum(w(min(d1,d2))) for shared
        -> weight_extra_mapped = sum(w(d)) for all mapped but non-shared
        -> weight_extra_all = sum(w(d)) for all non-shared
        -> w(d) = 1 if d <= 5, exp(-2 * ((d-5.0)/4.28)^2) else
      
      In the formulas above:
    
      * "d": CA/CB-CA/CB distance of an "inter-chain contact" ("d1", "d2" for
        "shared" contacts).
      * "mapped": we could map chains of two structures and align residues in
        :attr:`alignments`.
      * "shared": pairs of residues which are "mapped" and have
        "inter-chain contact" in both structures.
      * "inter-chain contact": CB-CB pairs (CA for GLY) with distance <= 12 A
        (fallback to CA-CA if :attr:`calpha_only` is True).
      * "w(d)": weighting function (prob. of 2 res. to interact given CB distance)
        from `Xu et al. 2009 <https://dx.doi.org/10.1016%2Fj.jmb.2008.06.002>`_.
      
      :param ent_1: First structure to be scored.
      :type ent_1:  :class:`QSscoreEntity`, :class:`~ost.mol.EntityHandle` or
                    :class:`~ost.mol.EntityView`
      :param ent_2: Second structure to be scored.
      :type ent_2:  :class:`QSscoreEntity`, :class:`~ost.mol.EntityHandle` or
                    :class:`~ost.mol.EntityView`
      :param res_num_alignment: Sets :attr:`res_num_alignment`
    
      :raises: :class:`QSscoreError` if input structures are invalid or are monomers
               or have issues that make it impossible for a QS score to be computed.
    
      .. attribute:: qs_ent_1
    
        :class:`QSscoreEntity` object for *ent_1* given at construction.
        If entity names (:attr:`~QSscoreEntity.original_name`) are not unique, we
        set it to 'pdb_1' using :func:`~QSscoreEntity.SetName`.
    
      .. attribute:: qs_ent_2
    
        :class:`QSscoreEntity` object for *ent_2* given at construction.
        If entity names (:attr:`~QSscoreEntity.original_name`) are not unique, we
        set it to 'pdb_2' using :func:`~QSscoreEntity.SetName`.
    
      .. attribute:: calpha_only
    
        True if any of the two structures is CA-only (after cleanup).
    
        :type: :class:`bool`
    
      .. attribute:: max_ca_per_chain_for_cm
    
        Maximal number of CA atoms to use in each chain to determine chain mappings.
        Setting this to -1 disables the limit. Limiting it speeds up determination
        of symmetries and chain mappings. By default it is set to 100.
    
        :type: :class:`int`
    
      .. attribute:: max_mappings_extensive
    
        Maximal number of chain mappings to test for 'extensive'
        :attr:`chain_mapping_scheme`. The extensive chain mapping search must in the
        worst case check O(N^2) * O(N!) possible mappings for complexes with N
        chains. Two octamers without symmetry would require 322560 mappings to be
        checked. To limit computations, a :class:`QSscoreError` is thrown if we try
        more than the maximal number of chain mappings.
        The value must be set before the first use of :attr:`chain_mapping`.
        By default it is set to 100000.
    
        :type: :class:`int`
    
      .. attribute:: res_num_alignment
    
        Forces each alignment in :attr:`alignments` to be based on residue numbers
        instead of using a global BLOSUM62-based alignment.
    
        :type: :class:`bool`
      """
      def __init__(self, ent_1, ent_2, res_num_alignment=False):
        # generate QSscoreEntity objects?
        if isinstance(ent_1, QSscoreEntity):
          self.qs_ent_1 = ent_1
        else:
          self.qs_ent_1 = QSscoreEntity(ent_1)
        if isinstance(ent_2, QSscoreEntity):
          self.qs_ent_2 = ent_2
        else:
          self.qs_ent_2 = QSscoreEntity(ent_2)
        # check validity of inputs
        if not self.qs_ent_1.is_valid or not self.qs_ent_2.is_valid:
          raise QSscoreError("Invalid input in QSscorer!")
        # set names for structures
        if self.qs_ent_1.original_name == self.qs_ent_2.original_name:
          self.qs_ent_1.SetName('pdb_1')
          self.qs_ent_2.SetName('pdb_2')
        else:
          self.qs_ent_1.SetName(self.qs_ent_1.original_name)
          self.qs_ent_2.SetName(self.qs_ent_2.original_name)
        # set other public attributes
        self.res_num_alignment = res_num_alignment
        self.calpha_only = self.qs_ent_1.calpha_only or self.qs_ent_2.calpha_only
        self.max_ca_per_chain_for_cm = 100
        self.max_mappings_extensive = 100000
        # init cached stuff
        self._chem_mapping = None
        self._ent_to_cm_1 = None
        self._ent_to_cm_2 = None
        self._symm_1 = None
        self._symm_2 = None
        self._chain_mapping = None
        self._chain_mapping_scheme = None
        self._alignments = None
        self._mapped_residues = None
        self._global_score = None
        self._best_score = None
        self._superposition = None
        self._clustalw_bin = None
    
      @property
      def chem_mapping(self):
        """Inter-complex mapping of chemical groups.
    
        Each group (see :attr:`QSscoreEntity.chem_groups`) is mapped according to
        highest sequence identity. Alignment is between longest sequences in groups.
    
        Limitations:
    
        - If different numbers of groups, we map only the groups for the complex
          with less groups (rest considered unmapped and shown as warning)
        - The mapping is forced: the "best" mapping will be chosen independently of
          how low the seq. identity may be
    
        :getter: Computed on first use (cached)
        :type: :class:`dict` with key = :class:`tuple` of chain names in
               :attr:`qs_ent_1` and value = :class:`tuple` of chain names in
               :attr:`qs_ent_2`.
    
        :raises: :class:`QSscoreError` if we end up having no chains for either
                 entity in the mapping (can happen if chains do not have CA atoms).
        """
        if self._chem_mapping is None:
          self._chem_mapping = _GetChemGroupsMapping(self.qs_ent_1, self.qs_ent_2)
        return self._chem_mapping
    
      @chem_mapping.setter
      def chem_mapping(self, chem_mapping):
        self._chem_mapping = chem_mapping
    
      @property
      def ent_to_cm_1(self):
        """Subset of :attr:`qs_ent_1` used to compute chain mapping and symmetries.
    
        Properties:
    
        - Includes only residues aligned according to :attr:`chem_mapping`
        - Includes only 1 CA atom per residue
        - Has at least 5 and at most :attr:`max_ca_per_chain_for_cm` atoms per chain
        - All chains of the same chemical group have the same number of atoms
          (also in :attr:`ent_to_cm_2` according to :attr:`chem_mapping`)
        - All chains appearing in :attr:`chem_mapping` appear in this entity
          (so the two can be safely used together)
    
        This entity might be transformed (i.e. all positions rotated/translated by
        same transformation matrix) if this can speed up computations. So do not
        assume fixed global positions (but relative distances will remain fixed).
    
        :getter: Computed on first use (cached)
        :type: :class:`~ost.mol.EntityHandle`
    
        :raises: :class:`QSscoreError` if any chain ends up having less than 5 res.
        """
        if self._ent_to_cm_1 is None:
          self._ComputeAlignedEntities()
        return self._ent_to_cm_1
    
      @ent_to_cm_1.setter
      def ent_to_cm_1(self, ent_to_cm_1):
        self._ent_to_cm_1 = ent_to_cm_1
    
      @property
      def ent_to_cm_2(self):
        """Subset of :attr:`qs_ent_1` used to compute chain mapping and symmetries
        (see :attr:`ent_to_cm_1` for details).
        """
        if self._ent_to_cm_2 is None:
          self._ComputeAlignedEntities()
        return self._ent_to_cm_2
    
      @ent_to_cm_2.setter
      def ent_to_cm_2(self, ent_to_cm_2):
        self._ent_to_cm_2 = ent_to_cm_2
    
      @property
      def symm_1(self):
        """Symmetry groups for :attr:`qs_ent_1` used to speed up chain mapping.
    
        This is a list of chain-lists where each chain-list can be used reconstruct
        the others via cyclic C or dihedral D symmetry. The first chain-list is used
        as a representative symmetry group. For heteromers, the group-members must
        contain all different seqres in oligomer.
    
        Example: symm. groups [(A,B,C), (D,E,F), (G,H,I)] means that there are
        symmetry transformations to get (D,E,F) and (G,H,I) from (A,B,C).
    
        Properties:
    
        - All symmetry group tuples have the same length (num. of chains)
        - All chains in :attr:`ent_to_cm_1` appear (w/o duplicates)
        - For heteros: symmetry group tuples have all different chem. groups
        - Trivial symmetry group = one tuple with all chains (used if inconsistent
          data provided or if no symmetry is found)
        - Either compatible to :attr:`symm_2` or trivial symmetry groups used.
          Compatibility requires same lengths of symmetry group tuples and it must
          be possible to get an overlap (80% of residues covered within 6 A of a
          (chem. mapped) chain) of all chains in representative symmetry groups by
          superposing one pair of chains.
    
        :getter: Computed on first use (cached)
        :type: :class:`list` of :class:`tuple` of :class:`str` (chain names)
        """
        if self._symm_1 is None:
          self._ComputeSymmetry()
        return self._symm_1
    
      @property
      def symm_2(self):
        """Symmetry groups for :attr:`qs_ent_2` (see :attr:`symm_1` for details)."""
        if self._symm_2 is None:
          self._ComputeSymmetry()
        return self._symm_2
    
      def SetSymmetries(self, symm_1, symm_2):
        """Set user-provided symmetry groups.
    
        These groups are restricted to chain names appearing in :attr:`ent_to_cm_1`
        and :attr:`ent_to_cm_2` respectively. They are only valid if they cover all
        chains and both *symm_1* and *symm_2* have same lengths of symmetry group
        tuples. Otherwise trivial symmetry group used (see :attr:`symm_1`).
    
        :param symm_1: Value to set for :attr:`symm_1`.
        :param symm_2: Value to set for :attr:`symm_2`.
        """
        # restrict chain names
        self._symm_1 = _CleanUserSymmetry(symm_1, self.ent_to_cm_1)
        self._symm_2 = _CleanUserSymmetry(symm_2, self.ent_to_cm_2)
        # check that we have reasonable symmetries set (fallback: all chains)
        if not _AreValidSymmetries(self._symm_1, self._symm_2):
          self._symm_1 = [tuple(ch.name for ch in self.ent_to_cm_1.chains)]
          self._symm_2 = [tuple(ch.name for ch in self.ent_to_cm_2.chains)]
    
      @property
      def chain_mapping(self):
        """Mapping from :attr:`ent_to_cm_1` to :attr:`ent_to_cm_2`.
    
        Properties:
    
        - Mapping is between chains of same chem. group (see :attr:`chem_mapping`)
        - Each chain can appear only once in mapping
        - All chains of complex with less chains are mapped
        - Symmetry (:attr:`symm_1`, :attr:`symm_2`) is taken into account
    
        Details on algorithms used to find mapping:
    
        - We try all pairs of chem. mapped chains within symmetry group and get
          superpose-transformation for them
        - First option: check for "sufficient overlap" of other chain-pairs
    
          - For each chain-pair defined above: apply superposition to full oligomer
            and map chains based on structural overlap
          - Structural overlap = X% of residues in second oligomer covered within Y
            Angstrom of a (chem. mapped) chain in first oligomer. We successively
            try (X,Y) = (80,4), (40,6) and (20,8) to be less and less strict in
            mapping (warning shown for most permissive one).
          - If multiple possible mappings are found, we choose the one which leads
            to the lowest multi-chain-RMSD given the superposition
    
        - Fallback option: try all mappings to find minimal multi-chain-RMSD
          (warning shown)
    
          - For each chain-pair defined above: apply superposition, try all (!)
            possible chain mappings (within symmetry group) and keep mapping with
            lowest multi-chain-RMSD
          - Repeat procedure above to resolve symmetry. Within the symmetry group we
            can use the chain mapping computed before and we just need to find which
            symmetry group in first oligomer maps to which in the second one. We
            again try all possible combinations...
          - Limitations:
            
            - Trying all possible mappings is a combinatorial nightmare (factorial).
              We throw an exception if too many combinations (e.g. octomer vs
              octomer with no usable symmetry)
            - The mapping is forced: the "best" mapping will be chosen independently
              of how badly they fit in terms of multi-chain-RMSD
            - As a result, such a forced mapping can lead to a large range of
              resulting QS scores. An extreme example was observed between 1on3.1
              and 3u9r.1, where :attr:`global_score` can range from 0.12 to 0.43
              for mappings with very similar multi-chain-RMSD.
    
        :getter: Computed on first use (cached)
        :type: :class:`dict` with key / value = :class:`str` (chain names, key
               for :attr:`ent_to_cm_1`, value for :attr:`ent_to_cm_2`)
        :raises: :class:`QSscoreError` if there are too many combinations to check
                 to find a chain mapping (see :attr:`max_mappings_extensive`).
        """
        if self._chain_mapping is None:
          self._chain_mapping, self._chain_mapping_scheme = \
            _GetChainMapping(self.ent_to_cm_1, self.ent_to_cm_2, self.symm_1,
                             self.symm_2, self.chem_mapping,
                             self.max_mappings_extensive)
          LogInfo('Mapping found: %s' % str(self._chain_mapping))
        return self._chain_mapping
    
      @chain_mapping.setter
      def chain_mapping(self, chain_mapping):
        self._chain_mapping = chain_mapping
    
      @property
      def chain_mapping_scheme(self):
        """Mapping scheme used to get :attr:`chain_mapping`.
    
        Possible values:
    
        - 'strict': 80% overlap needed within 4 Angstrom (overlap based mapping).
        - 'tolerant': 40% overlap needed within 6 Angstrom (overlap based mapping).
        - 'permissive': 20% overlap needed within 8 Angstrom (overlap based
          mapping). It's best if you check mapping manually!
        - 'extensive': Extensive search used for mapping detection (fallback). This
          approach has known limitations and may be removed in future versions.
          Mapping should be checked manually!
        - 'user': :attr:`chain_mapping` was set by user before first use of this
          attribute.
    
        :getter: Computed with :attr:`chain_mapping` on first use (cached)
        :type: :class:`str`
        :raises: :class:`QSscoreError` as in :attr:`chain_mapping`.
        """
        if self._chain_mapping_scheme is None:
          # default: user provided
          self._chain_mapping_scheme = 'user'
          # get chain mapping and make sure internal variable is set
          # -> will not compute and only update _chain_mapping if user provided
          # -> will compute and overwrite _chain_mapping_scheme else
          self._chain_mapping = self.chain_mapping
        return self._chain_mapping_scheme
    
      @property
      def alignments(self):
        """List of successful sequence alignments using :attr:`chain_mapping`.
    
        There will be one alignment for each mapped chain and they are ordered by
        their chain names in :attr:`qs_ent_1`.
    
        The first sequence of each alignment belongs to :attr:`qs_ent_1` and the
        second one to :attr:`qs_ent_2`. The sequences are named according to the
        mapped chain names and have views attached into :attr:`QSscoreEntity.ent`
        of :attr:`qs_ent_1` and :attr:`qs_ent_2`.
    
        If :attr:`res_num_alignment` is False, each alignment is performed using a
        global BLOSUM62-based alignment. Otherwise, the positions in the alignment
        sequences are simply given by the residue number so that residues with
        matching numbers are aligned.
    
        :getter: Computed on first use (cached)
        :type: :class:`list` of :class:`~ost.seq.AlignmentHandle`
        """
        if self._alignments is None:
          self._alignments = _GetMappedAlignments(self.qs_ent_1.ent,
                                                  self.qs_ent_2.ent,
                                                  self.chain_mapping,
                                                  self.res_num_alignment)
        return self._alignments
    
      @alignments.setter
      def alignments(self, alignments):
        self._alignments = alignments
    
      @property
      def mapped_residues(self):
        """Mapping of shared residues in :attr:`alignments`.
    
        :getter: Computed on first use (cached)
        :type: :class:`dict` *mapped_residues[c1][r1] = r2* with:
               *c1* = Chain name in first entity (= first sequence in aln),
               *r1* = Residue number in first entity,
               *r2* = Residue number in second entity
        """
        if self._mapped_residues is None:
          self._mapped_residues = _GetMappedResidues(self.alignments)
        return self._mapped_residues
    
      @mapped_residues.setter
      def mapped_residues(self, mapped_residues):
        self._mapped_residues = mapped_residues
    
      @property
      def global_score(self):
        """QS-score with penalties.
        
        The range of the score is between 0 (i.e. no interface residues are shared
        between biounits) and 1 (i.e. the interfaces are identical).
        
        The global QS-score is computed applying penalties when interface residues
        or entire chains are missing (i.e. anything that is not mapped in
        :attr:`mapped_residues` / :attr:`chain_mapping`) in one of the biounits.
    
        :getter: Computed on first use (cached)
        :type: :class:`float`
        :raises: :class:`QSscoreError` if only one chain is mapped
        """
        if self._global_score is None:
          self._ComputeScores()
        return self._global_score
    
      @property
      def best_score(self):
        """QS-score without penalties.
    
        Like :attr:`global_score`, but neglecting additional residues or chains in
        one of the biounits (i.e. the score is calculated considering only mapped
        chains and residues).
    
        :getter: Computed on first use (cached)
        :type: :class:`float`
        :raises: :class:`QSscoreError` if only one chain is mapped
        """
        if self._best_score is None:
          self._ComputeScores()
        return self._best_score
    
      @property
      def superposition(self):
        """Superposition result based on shared CA atoms in :attr:`alignments`.
    
        The superposition can be used to map :attr:`QSscoreEntity.ent` of
        :attr:`qs_ent_1` onto the one of :attr:`qs_ent_2`. Use
        :func:`ost.geom.Invert` if you need the opposite transformation.
    
        :getter: Computed on first use (cached)
        :type: :class:`ost.mol.alg.SuperpositionResult`
        """
        if self._superposition is None:
          self._superposition = _GetQsSuperposition(self.alignments)
          # report it
          sup_rmsd = self._superposition.rmsd
          cmp_view = self._superposition.view1
          LogInfo('CA RMSD for %s aligned residues on %s chains: %.2f' \
                  % (cmp_view.residue_count, cmp_view.chain_count, sup_rmsd))
        return self._superposition
    
      @property
      def clustalw_bin(self):
        """
        Full path to ``clustalw`` or ``clustalw2`` executable to use for multiple
        sequence alignments (unless :attr:`chain_mapping` is provided manually).
    
        :getter: Located in path on first use (cached)
        :type: :class:`str`
        """
        if self._clustalw_bin is None:
          self._clustalw_bin = settings.Locate(('clustalw', 'clustalw2'))
        return self._clustalw_bin
    
      @clustalw_bin.setter
      def clustalw_bin(self, clustalw_bin):
        self._clustalw_bin = clustalw_bin
    
      def GetOligoLDDTScorer(self, settings, penalize_extra_chains=True):
        """
        :return: :class:`OligoLDDTScorer` object, setup for this QS scoring problem.
                 The scorer is set up with :attr:`qs_ent_1` as the reference and
                 :attr:`qs_ent_2` as the model.
        :param settings: Passed to :class:`OligoLDDTScorer` constructor.
        :param penalize_extra_chains: Passed to :class:`OligoLDDTScorer` constructor.
        """
        return OligoLDDTScorer(self.qs_ent_1.ent, self.qs_ent_2.ent,
                               self.alignments, self.calpha_only, settings,
                               penalize_extra_chains = penalize_extra_chains)
    
      ##############################################################################
      # Class internal helpers (anything that doesnt easily work without this class)
      ##############################################################################
    
      def _ComputeAlignedEntities(self):
        """Fills cached ent_to_cm_1 and ent_to_cm_2."""
        # get aligned residues via MSA
        ev1, ev2 = _GetAlignedResidues(self.qs_ent_1, self.qs_ent_2,
                                       self.chem_mapping,
                                       self.max_ca_per_chain_for_cm,
                                       self.clustalw_bin)
        # extract new entities
        self._ent_to_cm_1 = mol.CreateEntityFromView(ev1, True)
        self._ent_to_cm_2 = mol.CreateEntityFromView(ev2, True)
        # name them
        self._ent_to_cm_1.SetName(self.qs_ent_1.GetName())
        self._ent_to_cm_2.SetName(self.qs_ent_2.GetName())
    
      def _ComputeSymmetry(self):
        """Fills cached symm_1 and symm_2."""
        # get them
        self._symm_1, self._symm_2 = \
          _FindSymmetry(self.qs_ent_1, self.qs_ent_2, self.ent_to_cm_1,
                        self.ent_to_cm_2, self.chem_mapping)
        # check that we have reasonable symmetries set (fallback: all chains)
        if not _AreValidSymmetries(self._symm_1, self._symm_2):
          self._symm_1 = [tuple(ch.name for ch in self.ent_to_cm_1.chains)]
          self._symm_2 = [tuple(ch.name for ch in self.ent_to_cm_2.chains)]
    
      def _ComputeScores(self):
        """Fills cached global_score and best_score."""
        if len(self.chain_mapping) < 2:
          raise QSscoreError("QS-score is not defined for monomers")
        # get contacts
        if self.calpha_only:
          contacts_1 = self.qs_ent_1.contacts_ca
          contacts_2 = self.qs_ent_2.contacts_ca
        else:
          contacts_1 = self.qs_ent_1.contacts
          contacts_2 = self.qs_ent_2.contacts
        # get scores
        scores = _GetScores(contacts_1, contacts_2, self.mapped_residues,
                            self.chain_mapping)
        self._best_score = scores[0]
        self._global_score = scores[1]
        # report scores
        LogInfo('QSscore %s, %s: best: %.2f, global: %.2f' \
                % (self.qs_ent_1.GetName(), self.qs_ent_2.GetName(),
                   self._best_score, self._global_score))
    
    
    ###############################################################################
    # Entity with cached entries for QS scoring
    ###############################################################################
    
    class QSscoreEntity(object):
      """Entity with cached entries for QS scoring.
    
      Any known / precomputed information can be filled into the appropriate
      attribute here as long as they are labelled as read/write. Otherwise the
      quantities are computed on first access and cached (lazy evaluation). The
      heaviest load is expected when computing :attr:`contacts` and
      :attr:`contacts_ca`.
    
      :param ent: Entity to be used for QS scoring. A copy of it will be processed.
      :type ent:  :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView`
    
      .. attribute:: is_valid
    
        True, if successfully initialized. False, if input structure has no protein
        chains with >= 20 residues.
    
        :type: :class:`bool`
    
      .. attribute:: original_name
    
        Name set for *ent* when object was created.
    
        :type: :class:`str`
    
      .. attribute:: ent
    
        Cleaned version of *ent* passed at construction. Hydrogens are removed, the
        entity is processed with a :class:`~ost.conop.RuleBasedProcessor` and chains
        listed in :attr:`removed_chains` have been removed. The name of this entity
        might change during scoring (see :func:`GetName`). Otherwise, this will be
        fixed.
    
        :type: :class:`~ost.mol.EntityHandle`
    
      .. attribute:: removed_chains
    
        Chains removed from *ent* passed at construction. These are ligand and water
        chains as well as small (< 20 res.) peptides or chains with no amino acids
        (determined by chem. type, which is set by rule based processor).
    
        :type: :class:`list` of :class:`str`
    
      .. attribute:: calpha_only
    
        Whether entity is CA-only (i.e. it has 0 CB atoms)
    
        :type: :class:`bool`
      """
      def __init__(self, ent):
        # copy entity and process/clean it
        self.original_name = ent.GetName()
        ent = mol.CreateEntityFromView(ent.Select('ele!=H and aname!=HN'), True)
        if not conop.GetDefaultLib():
          raise RuntimeError("QSscore computation requires a compound library!")
        pr = conop.RuleBasedProcessor(conop.GetDefaultLib())
        pr.Process(ent)
        self.ent, self.removed_chains, self.calpha_only = _CleanInputEntity(ent)
        # check if it's suitable for QS scoring
        if self.ent.chain_count == 0:
          LogError('Bad input file: ' + ent.GetName() + '. No chains left after '
                   'removing water, ligands and small peptides.')
          self.is_valid = False
        elif self.ent.chain_count == 1:
          LogWarning('Structure ' + ent.GetName() + ' is a monomer.')
          self.is_valid = True
        else:
          self.is_valid = True
        # init cached stuff
        self._ca_entity = None
        self._ca_chains = None
        self._alignments = {}
        self._chem_groups = None
        self._angles = {}
        self._axis = {}
        self._contacts = None
        self._contacts_ca = None
    
      def GetName(self):
        """Wrapper to :func:`~ost.mol.EntityHandle.GetName` of :attr:`ent`.
        This is used to uniquely identify the entity while scoring. The name may
        therefore change while :attr:`original_name` remains fixed.
        """
        # for duck-typing and convenience
        return self.ent.GetName()
    
      def SetName(self, new_name):
        """Wrapper to :func:`~ost.mol.EntityHandle.SetName` of :attr:`ent`.
        Use this to change unique identifier while scoring (see :func:`GetName`).
        """
        # for duck-typing and convenience
        self.ent.SetName(new_name)
    
      @property
      def ca_entity(self):
        """
        Reduced representation of :attr:`ent` with only CA atoms.
        This guarantees that each included residue has exactly one atom.
    
        :getter: Computed on first use (cached)
        :type: :class:`~ost.mol.EntityHandle`
        """
        if self._ca_entity is None:
          self._ca_entity = _GetCAOnlyEntity(self.ent)
        return self._ca_entity
    
      @property
      def ca_chains(self):
        """
        Map of chain names in :attr:`ent` to sequences with attached view to CA-only
        chains (into :attr:`ca_entity`). Useful for alignments and superpositions.
    
        :getter: Computed on first use (cached)
        :type: :class:`dict` (key = :class:`str`,
               value = :class:`~ost.seq.SequenceHandle`)
        """
        if self._ca_chains is None:
          self._ca_chains = dict()
          ca_entity = self.ca_entity
          for ch in ca_entity.chains:
            self._ca_chains[ch.name] = seq.SequenceFromChain(ch.name, ch)
        return self._ca_chains
    
      def GetAlignment(self, c1, c2):
        """Get sequence alignment of chain *c1* with chain *c2*.
        Computed on first use based on :attr:`ca_chains` (cached).
    
        :param c1: Chain name for first chain to align.
        :type c1:  :class:`str`
        :param c2: Chain name for second chain to align.
        :type c2:  :class:`str`
        :rtype: :class:`~ost.seq.AlignmentHandle` or None if it failed.
        """
        if (c1,c2) not in self._alignments:
          ca_chains = self.ca_chains
          self._alignments[(c1,c2)] = _AlignAtomSeqs(ca_chains[c1], ca_chains[c2])
        return self._alignments[(c1,c2)]
    
      @property
      def chem_groups(self):
        """
        Intra-complex group of chemically identical (seq. id. > 95%) polypeptide
        chains as extracted from :attr:`ca_chains`. First chain in group is the one
        with the longest sequence.
    
        :getter: Computed on first use (cached)
        :type: :class:`list` of :class:`list` of :class:`str` (chain names)
        """
        if self._chem_groups is None:
          self._chem_groups = _GetChemGroups(self, 95)
          LogInfo('Chemically equivalent chain-groups in %s: %s' \
                  % (self.GetName(), str(self._chem_groups)))
        return self._chem_groups
    
      def GetAngles(self, c1, c2):
        """Get Euler angles from superposition of chain *c1* with chain *c2*.
        Computed on first use based on :attr:`ca_chains` (cached).
    
        :param c1: Chain name for first chain to superpose.
        :type c1:  :class:`str`
        :param c2: Chain name for second chain to superpose.
        :type c2:  :class:`str`
        :return: 3 Euler angles (may contain nan if something fails).
        :rtype:  :class:`numpy.array`
        """
        if (c1,c2) not in self._angles:
          self._GetSuperposeData(c1, c2)
        return self._angles[(c1,c2)]
    
      def GetAxis(self, c1, c2):
        """Get axis of symmetry from superposition of chain *c1* with chain *c2*.
        Computed on first use based on :attr:`ca_chains` (cached).
    
        :param c1: Chain name for first chain to superpose.
        :type c1:  :class:`str`
        :param c2: Chain name for second chain to superpose.
        :type c2:  :class:`str`
        :return: Rotational axis (may contain nan if something fails).
        :rtype:  :class:`numpy.array`
        """
        if (c1,c2) not in self._axis:
          self._GetSuperposeData(c1, c2)
        return self._axis[(c1,c2)]
    
      @property
      def contacts(self):
        """
        Connectivity dictionary (**read/write**).
        As given by :func:`GetContacts` with *calpha_only* = False on :attr:`ent`.
    
        :getter: Computed on first use (cached)
        :setter: Uses :func:`FilterContacts` to ensure that we only keep contacts
                 for chains in the cleaned entity.
        :type: See return type of :func:`GetContacts`
        """
        if self._contacts is None:
          self._contacts = GetContacts(self.ent, False)
        return self._contacts
    
      @contacts.setter
      def contacts(self, new_contacts):
        chain_names = set([ch.name for ch in self.ent.chains])
        self._contacts = FilterContacts(new_contacts, chain_names)
      
      @property
      def contacts_ca(self):
        """
        CA-only connectivity dictionary (**read/write**).
        Like :attr:`contacts` but with *calpha_only* = True in :func:`GetContacts`.
        """
        if self._contacts_ca is None:
          self._contacts_ca = GetContacts(self.ent, True)
        return self._contacts_ca
      
      @contacts_ca.setter
      def contacts_ca(self, new_contacts):
        chain_names = set([ch.name for ch in self.ent.chains])
        self._contacts_ca = FilterContacts(new_contacts, chain_names)
    
      ##############################################################################
      # Class internal helpers (anything that doesnt easily work without this class)
      ##############################################################################
    
      def _GetSuperposeData(self, c1, c2):
        """Fill _angles and _axis from superposition of CA chains of c1 and c2."""
        # get aligned views (must contain identical numbers of atoms!)
        aln = self.GetAlignment(c1, c2)
        if not aln:
          # fallback for non-aligned stuff (nan)
          self._angles[(c1,c2)] = np.empty(3) * np.nan
          self._axis[(c1,c2)] = np.empty(3) * np.nan
          return
        v1, v2 = seq.ViewsFromAlignment(aln)
        if v1.atom_count < 3:
          # fallback for non-aligned stuff (nan)
          self._angles[(c1,c2)] = np.empty(3) * np.nan
          self._axis[(c1,c2)] = np.empty(3) * np.nan
          return
        # get transformation
        sup_res = mol.alg.SuperposeSVD(v1, v2, apply_transform=False)
        Rt = sup_res.transformation
        # extract angles
        a,b,c = _GetAngles(Rt)
        self._angles[(c1,c2)] = np.asarray([a,b,c])
        # extract axis of symmetry
        R3 = geom.Rotation3(Rt.ExtractRotation())
        self._axis[(c1,c2)] = np.asarray(R3.GetRotationAxis().data)
    
    ###############################################################################
    # Contacts computations
    ###############################################################################
    
    def FilterContacts(contacts, chain_names):
      """Filter contacts to contain only contacts for chains in *chain_names*.
    
      :param contacts: Connectivity dictionary as produced by :func:`GetContacts`.
      :type contacts:  :class:`dict`
      :param chain_names: Chain names to keep.
      :type chain_names:  :class:`list` or (better) :class:`set`
      :return: New connectivity dictionary (format as in :func:`GetContacts`)
      :rtype:  :class:`dict`
      """
      # create new dict with subset
      filtered_contacts = dict()
      for c1 in contacts:
        if c1 in chain_names:
          new_contacts = dict()
          for c2 in contacts[c1]:
            if c2 in chain_names:
              new_contacts[c2] = contacts[c1][c2]
          # avoid adding empty dicts
          if new_contacts:
            filtered_contacts[c1] = new_contacts
      return filtered_contacts
    
    def GetContacts(entity, calpha_only, dist_thr=12.0):
      """Get inter-chain contacts of a macromolecular entity.
    
      Contacts are pairs of residues within a given distance belonging to different
      chains. They are stored once per pair and include the CA/CB-CA/CB distance.
    
      :param entity: An entity to check connectivity for.
      :type entity:  :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView`
      :param calpha_only: If True, we only consider CA-CA distances. Else, we use CB
                          unless the residue is a GLY.
      :type calpha_only:  :class:`bool`
      :param dist_thr: Maximal CA/CB-CA/CB distance to be considered in contact.
      :type dist_thr:  :class:`float`
      :return: A connectivity dictionary. A pair of residues with chain names
               *ch_name1* & *ch_name2* (*ch_name1* < *ch_name2*), residue numbers
               *res_num1* & *res_num2* and distance *dist* (<= *dist_thr*) are
               stored as *result[ch_name1][ch_name2][res_num1][res_num2]* = *dist*.
      :rtype:  :class:`dict`
      """
      # get ent copy to search on
      if calpha_only:
        ev = entity.Select("aname=CA")
      else:
        ev = entity.Select("(rname=GLY and aname=CA) or aname=CB")
      ent = mol.CreateEntityFromView(ev, True)
      # search all vs all
      contacts = dict()
      for atom in ent.atoms:
        ch_name1 = atom.chain.name
        res_num1 = atom.residue.number.num
        close_atoms = ent.FindWithin(atom.pos, dist_thr)
        for close_atom in close_atoms:
          ch_name2 = close_atom.chain.name
          if ch_name2 > ch_name1:
            res_num2 = close_atom.residue.number.num
            dist = geom.Distance(atom.pos, close_atom.pos)
            # add to contacts
            if ch_name1 not in contacts:
              contacts[ch_name1] = dict()
            if ch_name2 not in contacts[ch_name1]:
              contacts[ch_name1][ch_name2] = dict()
            if res_num1 not in contacts[ch_name1][ch_name2]:
              contacts[ch_name1][ch_name2][res_num1] = dict()
            contacts[ch_name1][ch_name2][res_num1][res_num2] = round(dist, 3)
      # DONE
      return contacts
    
    ###############################################################################
    # Oligo-lDDT scores
    ###############################################################################
    
    class OligoLDDTScorer(object):
      """Helper class to calculate oligomeric lDDT scores.
    
      This class can be used independently, but commonly it will be created by
      calling :func:`QSscorer.GetOligoLDDTScorer`.
    
      .. note::
    
        By construction, lDDT scores are not symmetric and hence it matters which
        structure is the reference (:attr:`ref`) and which one is the model
        (:attr:`mdl`). Extra residues in the model are generally not considered.
        Extra chains in the model can be considered by setting the
        :attr:`penalize_extra_chains` flag to True.
    
      :param ref: Sets :attr:`ref`
      :param mdl: Sets :attr:`mdl`
      :param alignments: Sets :attr:`alignments`
      :param calpha_only: Sets :attr:`calpha_only`
      :param settings: Sets :attr:`settings`
      :param penalize_extra_chains: Sets :attr:`penalize_extra_chains`
      
      .. attribute:: ref
                     mdl
    
        Full reference/model entity to be scored. The entity must contain all chains
        mapped in :attr:`alignments`. Additional chains in ref automatically impact
        the lDDT score as the according contacts are not conserved.
        However, punishing for extra chains in mdl must be explicitely activated by
        setting  :attr:`penalize_extra_chains` to True.
    
        :type: :class:`~ost.mol.EntityHandle`
      
      .. attribute:: alignments
    
        One alignment for each mapped chain of :attr:`ref`/:attr:`mdl` as defined in
        :attr:`QSscorer.alignments`. The first sequence of each alignment belongs to
        :attr:`ref` and the second one to :attr:`mdl`. Sequences must have sequence
        naming and attached views as defined in :attr:`QSscorer.alignments`.
    
        :type: :class:`list` of :class:`~ost.seq.AlignmentHandle`
    
      .. attribute:: calpha_only
    
        If True, restricts lDDT score to CA only.
    
        :type: :class:`bool`
    
      .. attribute:: settings
    
        Settings to use for lDDT scoring.
    
        :type: :class:`~ost.mol.alg.lDDTSettings`
    
      .. attribute:: penalize_extra_chains
    
        If True, extra chains in :attr:`mdl` will penalize the lDDT scores.
    
        :type: :class:`bool`
      """
    
      # NOTE: one could also allow computation of both penalized and unpenalized
      #       in same object -> must regenerate lddt_ref / lddt_mdl though
    
      def __init__(self, ref, mdl, alignments, calpha_only, settings,
                   penalize_extra_chains=False, chem_mapping=None):
        if not penalize_extra_chains:
          # warn for unmapped model chains
          unmapped_mdl_chains = self._GetUnmappedMdlChains(mdl, alignments)
          if unmapped_mdl_chains:
            LogWarning('MODEL contains chains unmapped to REFERENCE, '
                       'lDDT is not considering MODEL chains %s' \
                       % str(list(unmapped_mdl_chains)))
          # warn for unmapped reference chains
          ref_chains = set(ch.name for ch in ref.chains)
          mapped_ref_chains = set(aln.GetSequence(0).GetName() for aln in alignments)
          unmapped_ref_chains = (ref_chains - mapped_ref_chains)
          if unmapped_ref_chains:
            LogWarning('REFERENCE contains chains unmapped to MODEL, '
                       'lDDT penalizes these non-satisfied contacts %s' \
                       % str(list(unmapped_ref_chains)))
        # prepare fields
        self.ref = ref
        self.mdl = mdl
        self.alignments = alignments
        self.calpha_only = calpha_only
        self.settings = settings
        self.penalize_extra_chains = penalize_extra_chains
        self._lddt_scorer = None
        self._oligo_lddt = None
        self._oligo_lddt_tot = None
        self._oligo_lddt_cons = None
        self._oligo_lddt_per_res = None
        self._sc_lddt = None
        self._sc_lddt_tot = None
        self._sc_lddt_cons = None
        self._sc_lddt_per_res = None
        self._weighted_lddt = None
        self._chain_mapping = None
    
      @property
      def oligo_lddt(self):
        """Oligomeric lDDT score.
    
        lDDT using the full complex as reference/model structure. If
        :attr:`penalize_extra_chains` is True, the contacts from additional
        non-mapped model chains are added to the reference's total.
    
        The main difference with :attr:`weighted_lddt` is that the lDDT scorer
        "sees" the full complex here (incl. inter-chain contacts), while the
        weighted single chain score looks at each chain separately.
    
        :getter: Computed on first use (cached)
        :type: :class:`float`
        """
        if self._oligo_lddt is None:
          lDDT, per_res_lDDT, lDDT_tot, lDDT_cons, a, b, c = \
          self.lddt_scorer.lDDT(self.mdl,
                                thresholds = self.settings.cutoffs, 
                                chain_mapping = self.chain_mapping,
                                no_interchain=False,
                                penalize_extra_chains=self.penalize_extra_chains,
                                residue_mapping=self.alignments,
                                local_lddt_prop="oligo_lddt",
                                local_contact_prop="oligo_contact",
                                return_dist_test=True)
          self._oligo_lddt = lDDT
          self._oligo_lddt_tot = lDDT_tot
          self._oligo_lddt_cons = lDDT_cons
        return self._oligo_lddt
    
      @property
      def oligo_lddt_tot(self):
        """Number of total contacts used for oligo_lddt
    
        Potentially includes penalty contacts from non-mapped model chains 
    
        :getter: Computed on first use (cached)
        :type: :class:`int`    
        """
        if self._oligo_lddt_tot is None:
          yolo = self.oligo_lddt
          assert(self._oligo_lddt_tot is not None)
        return self._oligo_lddt_tot
    
      @property
      def oligo_lddt_cons(self):
        """Number of conserved contacts used for oligo_lddt
    
        :getter: Computed on first use (cached)
        :type: :class:`int`    
        """
        if self._oligo_lddt_cons is None:
          yolo = self.oligo_lddt
          assert(self._oligo_lddt_cons is not None)
        return self._oligo_lddt_cons
      
      @property
      def oligo_lddt_per_res(self):
        """Per residue scores based on oligo_lddt
    
        Each scored residue gets a dict with keys:
        ["residue_number", "residue_name", "chain", "lddt", "conserved_contacts",
        "total_contacts"] 
        The first three uniquely identify the residue and refer to the residue in
        self.ref.
    
        :getter: Computed on first use (cached)
        :type: :class:`list` of :class:`dict`
        """
        if self._oligo_lddt_per_res is None:
          yolo = self.oligo_lddt # trigger oligo_lddt computation to assign scores
                                 # and contacts as generic properties on residues
          self._oligo_lddt_per_res = self._GetPerResidueScores(self.alignments,
                                                               "oligo_lddt",
                                                               "oligo_contact_cons",
                                                               "oligo_contact_exp")
        return self._oligo_lddt_per_res
    
      @property
      def sc_lddt(self):
        """List of global lDDT score for each chain mapping in self.alignments.
    
        :getter: Computed on first use (cached)
        :type: :class:`list` of :class:`float`
        """
        if self._sc_lddt is None:
          yolo = self.weighted_lddt # sc_lddt is computed as a side product
          assert(self._sc_lddt is not None)
          assert(self._sc_lddt_tot is not None)
          assert(self._sc_lddt_cons is not None)
        return self._sc_lddt
    
      @property
      def sc_lddt_tot(self):
        """Number of total contacts for each chain mapping in self.alignments
    
        :getter: Computed on first use (cached)
        :type: :class:`list` of :class:`int`    
        """
        if self._sc_lddt_tot is None:
          yolo = self.sc_lddt # sc_lddt_tot is computed as a sideproduct
          assert(self._sc_lddt_tot is not None)
        return self._sc_lddt_tot
      
      @property
      def sc_lddt_cons(self):
        """Number of conserved contacts for each chain mapping in self.alignments
    
        :getter: Computed on first use (cached)
        :type: :class:`list` of :class:`int`    
        """
        if self._sc_lddt_cons is None:
          yolo = self.sc_lddt # sc_lddt_tot is computed as a sideproduct
          assert(self._sc_lddt_cons is not None)
        return self._sc_lddt_cons
    
      @property
      def sc_lddt_per_res(self):
        """Per residue scores based on sc_lddt
    
        Each scored residue gets a dict with keys:
        ["residue_number", "residue_name", "chain", "lddt", "conserved_contacts",
        "total_contacts"] 
        The first three uniquely identify the residue and refer to the residue in
        self.ref.
    
        :getter: Computed on first use (cached)
        :type: :class:`list` of :class:`dict`
        """
        if self._sc_lddt_per_res is None:
          yolo = self.sc_lddt # trigger sc_lddt computation to assign scores
                              # and contacts as generic properties on residues
          self._sc_lddt_per_res = self._GetPerResidueScores(self.alignments,
                                                            "sc_lddt",
                                                            "sc_contact_cons",
                                                            "sc_contact_exp")
        return self._sc_lddt_per_res
    
      @property
      def weighted_lddt(self):
        """Weighted average of single chain lDDT scores.
    
        The score is computed as a weighted average of single chain lDDT scores.
        In principle thats oligo_lddt without inter-chain contacts.
        (see :attr:`sc_lddt_scorers`). Chains in ref which are not mapped
        penalize the overall score as their contacts are not conserved.
        Chains in mdl which are not mapped only penalize the score if
        :attr:`penalize_extra_chains` is True.
    
        :getter: Computed on first use (cached)
        :type: :class:`float`
        """
        if self._weighted_lddt is None:
          lDDT, per_res_lDDT, lDDT_tot, lDDT_cons, res_indices, per_res_exp, \
          per_res_conserved = \
          self.lddt_scorer.lDDT(self.mdl,
                                thresholds = self.settings.cutoffs, 
                                chain_mapping = self.chain_mapping,
                                no_interchain=True,
                                penalize_extra_chains=self.penalize_extra_chains,
                                residue_mapping=self.alignments,
                                local_lddt_prop="sc_lddt",
                                local_contact_prop="sc_contact",
                                return_dist_test=True)
          self._weighted_lddt = lDDT
    
          # we directly use the results from above to also compute the
          # single chain lDDTs manually
          self._sc_lddt = list()
          self._sc_lddt_tot = list()
          self._sc_lddt_cons = list()
          chain_res_indices = dict()
          residues = self.mdl.residues
          for i, r_idx in enumerate(res_indices):
            r = residues[r_idx]
            ch = r.GetChain().GetName()
            if ch not in chain_res_indices:
              chain_res_indices[ch] = list()
            chain_res_indices[ch].append(i)
    
          n_thresholds = len(self.settings.cutoffs)
          for aln in self.alignments:
            ch = aln.GetSequence(0).GetName()
            cons = int(np.sum(per_res_conserved.take(chain_res_indices[ch], axis=0)))
            tot = self.lddt_scorer.GetNChainContacts(ch, no_interchain=True)
            tot*=n_thresholds
            if tot > 0:
              self._sc_lddt.append(float(cons)/tot)
            else:
              self._sc_lddt.append(0)
            self._sc_lddt_tot.append(tot)
            self._sc_lddt_cons.append(cons)
        return self._weighted_lddt
    
      @property
      def lddt_scorer(self):
        if self._lddt_scorer is None:
          if not conop.GetDefaultLib():
            raise RuntimeError("OligolDDT computation requires a compound library!")
          r = self.settings.radius
          seq_sep = self.settings.sequence_separation
          self._lddt_scorer = lddt.lDDTScorer(self.ref,
                                              inclusion_radius = r,
                                              sequence_separation = seq_sep)
        return self._lddt_scorer
    
      @property
      def chain_mapping(self):
        if self._chain_mapping is None:
          # chain mapping as required by lddt_scorer
          # key: model chain, value: reference chain
          self._chain_mapping = dict()
          for aln in self.alignments:
            ref_seq = aln.GetSequence(0)
            mdl_seq = aln.GetSequence(1)
            self._chain_mapping[mdl_seq.GetName()] = ref_seq.GetName()
        return self._chain_mapping
    
      ##############################################################################
      # Class internal helpers
      ##############################################################################
    
      @staticmethod
      def _GetPerResidueScores(alignments, lddt_prop, cons_prop, tot_prop):
        per_residue_sc = list()
        for aln in alignments:
          reference_chain = aln.GetSequence(0).GetName()
          for col in aln:
            ref_res = col.GetResidue(0)
            mdl_res = col.GetResidue(1)
            if ref_res.IsValid() and mdl_res.IsValid():
              if mdl_res.HasProp(lddt_prop) and mdl_res.HasProp(cons_prop) and \
              mdl_res.HasProp(tot_prop):
                num = ref_res.GetNumber().GetNum()
                name = ref_res.GetName()
                score = mdl_res.GetFloatProp(lddt_prop)
                cons = mdl_res.GetIntProp(cons_prop)
                tot = mdl_res.GetIntProp(tot_prop)
                per_residue_sc.append({"residue_number": num,
                                       "residue_name": name,
                                       "chain": reference_chain,
                                       "lddt": score,
                                       "conserved_contacts": cons,
                                       "total_contacts": tot})
        return per_residue_sc
    
      @staticmethod
      def _GetUnmappedMdlChains(mdl, alignments):
        # assume model is second sequence in alignment and is named by chain
        mdl_chains = set(ch.name for ch in mdl.chains)
        mapped_mdl_chains = set(aln.GetSequence(1).GetName() for aln in alignments)
        return (mdl_chains - mapped_mdl_chains)
    
    
    ###############################################################################
    # HELPERS
    ###############################################################################
    
    # general
    
    def _AlignAtomSeqs(seq_1, seq_2):
      """
      :type seq_1: :class:`ost.seq.SequenceHandle`
      :type seq_2: :class:`ost.seq.SequenceHandle`
      :return: Alignment of two sequences using a global alignment. Views attached
               to the input sequences will remain attached in the aln.
      :rtype:  :class:`~ost.seq.AlignmentHandle` or None if it failed.
      """
      # NOTE: If the two sequence have a greatly different length
      #       a local alignment could be a better choice...
      aln = None
      alns = seq.alg.GlobalAlign(seq_1, seq_2, seq.alg.BLOSUM62)
      if alns: aln = alns[0]
      if not aln:
        LogWarning('Failed to align %s to %s' % (seq_1.name, seq_2.name))
        LogWarning('%s:  %s' % (seq_1.name, seq_1.string))
        LogWarning('%s:  %s' % (seq_2.name, seq_2.string))
      return aln
    
    def _FixSelectChainNames(ch_names):
      """
      :return: String to be used with Select(cname=<RETURN>). Takes care of joining
               and putting quotation marks where needed.
      :rtype:  :class:`str`
      :param ch_names: Some iterable list of chain names (:class:`str` items).
      """
      return ','.join(mol.QueryQuoteName(ch_name) for ch_name in ch_names)
    
    # QS entity
    
    def _CleanInputEntity(ent):
      """
      :param ent: The OST entity to be cleaned.
      :type ent:  :class:`EntityHandle` or :class:`EntityView`
      :return: A tuple of 3 items: :attr:`QSscoreEntity.ent`,
                                   :attr:`QSscoreEntity.removed_chains`,
                                   :attr:`QSscoreEntity.calpha_only`
      """
      # find chains to remove
      removed_chains = []
      for ch in ent.chains:
        # we remove chains if they are small-peptides or if the contain no aa
        # or if they contain only unknown or modified residues
        if    ch.name in ['-', '_'] \
           or ch.residue_count < 20 \
           or not any(r.chem_type.IsAminoAcid() for r in ch.residues) \
           or not (set(r.one_letter_code for r in ch.residues) - {'?', 'X'}):
          removed_chains.append(ch.name)
    
      # remove them from *ent*
      if removed_chains:
        view = ent.Select('cname!=%s' % _FixSelectChainNames(set(removed_chains)))
        ent_new = mol.CreateEntityFromView(view, True)
        ent_new.SetName(ent.GetName())
      else:
        ent_new = ent
    
      # check if CA only
      calpha_only = False
      if ent_new.atom_count > 0 and ent_new.Select('aname=CB').atom_count == 0:
        LogInfo('Structure %s is a CA only structure!' % ent_new.GetName())
        calpha_only = True
    
      # report and return
      if removed_chains:
        LogInfo('Chains removed from %s: %s' \
                % (ent_new.GetName(), ''.join(removed_chains)))
      LogInfo('Chains in %s: %s' \
              % (ent_new.GetName(), ''.join([c.name for c in ent_new.chains])))
      return ent_new, removed_chains, calpha_only
    
    def _GetCAOnlyEntity(ent):
      """
      :param ent: Entity to process
      :type ent:  :class:`EntityHandle` or :class:`EntityView`
      :return: New entity with only CA and only one atom per residue
               (see :attr:`QSscoreEntity.ca_entity`)
      """
      # cook up CA only view (diff from Select = guaranteed 1 atom per residue)
      ca_view = ent.CreateEmptyView()
      # add chain by chain
      for res in ent.residues:
        ca_atom = res.FindAtom("CA")
        if ca_atom.IsValid():
          ca_view.AddAtom(ca_atom)
      # finalize
      return mol.CreateEntityFromView(ca_view, False)
    
    def _GetChemGroups(qs_ent, seqid_thr=95.):
      """
      :return: Intra-complex group of chemically identical polypeptide chains
               (see :attr:`QSscoreEntity.chem_groups`)
    
      :param qs_ent: Entity to process
      :type qs_ent:  :class:`QSscoreEntity`
      :param seqid_thr: Threshold used to decide when two chains are identical.
                        95 percent tolerates the few mutations crystallographers
                        like to do.
      :type seqid_thr:  :class:`float`
      """
      # get data from qs_ent
      ca_chains = qs_ent.ca_chains
      chain_names = sorted(ca_chains.keys())
      # get pairs of identical chains
      # NOTE: this scales quadratically with number of chains and may be optimized
      #       -> one could merge it with "merge transitive pairs" below...
      id_seqs = []
      for ch_1, ch_2 in itertools.combinations(chain_names, 2):
        aln = qs_ent.GetAlignment(ch_1, ch_2)
        if aln and seq.alg.SequenceIdentity(aln) > seqid_thr:
          id_seqs.append((ch_1, ch_2))
      # trivial case: no matching pairs
      if not id_seqs:
        return [[name] for name in chain_names]
    
      # merge transitive pairs
      groups = []
      for ch_1, ch_2 in id_seqs:
        found = False
        for g in groups:
          if ch_1 in g or ch_2 in g:
            found = True
            g.add(ch_1)
            g.add(ch_2)
        if not found:
          groups.append(set([ch_1, ch_2]))
      # sort internally based on sequence length
      chem_groups = []
      for g in groups:
        ranked_g = sorted([(-ca_chains[ch].length, ch) for ch in g])
        chem_groups.append([ch for _,ch in ranked_g])
      # add other dissimilar chains
      for ch in chain_names:
        if not any(ch in g for g in chem_groups):
          chem_groups.append([ch])
      
      return chem_groups
    
    def _GetAngles(Rt):
      """Computes the Euler angles given a transformation matrix.
    
      :param Rt: Rt operator.
      :type Rt:  :class:`ost.geom.Mat4`
      :return: A :class:`tuple` of angles for each axis (x,y,z)
      """
      rot = np.asarray(Rt.ExtractRotation().data).reshape(3,3)
      tx = np.arctan2(rot[2,1], rot[2,2])
      if tx < 0:
        tx += 2*np.pi
      ty = np.arctan2(rot[2,0], np.sqrt(rot[2,1]**2 + rot[2,2]**2))
      if ty < 0:
        ty += 2*np.pi
      tz = np.arctan2(rot[1,0], rot[0,0])
      if tz < 0:
        tz += 2*np.pi
      return tx,ty,tz
    
    # QS scorer
    
    def _GetChemGroupsMapping(qs_ent_1, qs_ent_2):
      """
      :return: Inter-complex mapping of chemical groups
               (see :attr:`QSscorer.chem_mapping`)
    
      :param qs_ent_1: See :attr:`QSscorer.qs_ent_1`
      :param qs_ent_2: See :attr:`QSscorer.qs_ent_2`
      """
      # get chem. groups and unique representative
      chem_groups_1 = qs_ent_1.chem_groups
      chem_groups_2 = qs_ent_2.chem_groups
      repr_chains_1 = {x[0]: tuple(x) for x in chem_groups_1}
      repr_chains_2 = {x[0]: tuple(x) for x in chem_groups_2}
    
      # if entities do not have different number of unique chains, we get the
      # mapping for the smaller set
      swapped = False
      if len(repr_chains_2) < len(repr_chains_1):
        repr_chains_1, repr_chains_2 = repr_chains_2, repr_chains_1
        qs_ent_1, qs_ent_2 = qs_ent_2, qs_ent_1
        swapped = True
    
      # find the closest to each chain between the two entities
      # NOTE: this may still be sensible to orthology problem
      # -> currently we use a global alignment and seq. id. to rank pairs
      # -> we also tried local alignments and weighting the seq. id. by the
      #    coverages of the alignments (gapless string in aln. / seq. length)
      #    but global aln performed better...
      chain_pairs = []
      ca_chains_1 = qs_ent_1.ca_chains
      ca_chains_2 = qs_ent_2.ca_chains
      for ch_1 in list(repr_chains_1.keys()):
        for ch_2 in list(repr_chains_2.keys()):
          aln = _AlignAtomSeqs(ca_chains_1[ch_1], ca_chains_2[ch_2])
          if aln:
            chains_seqid = seq.alg.SequenceIdentity(aln)
            LogVerbose('Sequence identity', ch_1, ch_2, 'seqid=%.2f' % chains_seqid)
            chain_pairs.append((chains_seqid, ch_1, ch_2))
    
      # get top matching groups first
      chain_pairs = sorted(chain_pairs, reverse=True)
      chem_mapping = {}
      for _, c1, c2 in chain_pairs:
        skip = False
        for a,b in chem_mapping.items():
          if repr_chains_1[c1] == a or repr_chains_2[c2] == b:
            skip = True
            break
        if not skip:
          chem_mapping[repr_chains_1[c1]] = repr_chains_2[c2]
      if swapped:
        chem_mapping = {y: x for x, y in chem_mapping.items()}
        qs_ent_1, qs_ent_2 = qs_ent_2, qs_ent_1
    
      # notify chains without partner
      mapped_1 = set([i for s in list(chem_mapping.keys()) for i in s])
      chains_1 = set([c.name for c in qs_ent_1.ent.chains])
      if chains_1 - mapped_1:
        LogWarning('Unmapped Chains in %s: %s'
                   % (qs_ent_1.GetName(), ','.join(list(chains_1 - mapped_1))))
    
      mapped_2 = set([i for s in list(chem_mapping.values()) for i in s])
      chains_2 = set([c.name for c in qs_ent_2.ent.chains])
      if chains_2 - mapped_2:
        LogWarning('Unmapped Chains in %s: %s'
                   % (qs_ent_2.GetName(), ','.join(list(chains_2 - mapped_2))))
      
      # check if we have any chains left
      LogInfo('Chemical chain-groups mapping: ' + str(chem_mapping))
      if len(mapped_1) < 1 or len(mapped_2) < 1:
        raise QSscoreError('Less than 1 chains left in chem_mapping.')
      return chem_mapping
    
    def _SelectFew(l, max_elements):
      """Return l or copy of l with at most *max_elements* entries."""
      n_el = len(l)
      if n_el <= max_elements:
        return l
      else:
        # cheap integer ceiling (-1 to ensure that x*max_elements gets d_el = x)
        d_el = ((n_el - 1) // max_elements) + 1
        new_l = list()
        for i in range(0, n_el, d_el):
          new_l.append(l[i])
        return new_l
    
    def _GetAlignedResidues(qs_ent_1, qs_ent_2, chem_mapping, max_ca_per_chain,
                            clustalw_bin):
      """
      :return: Tuple of two :class:`~ost.mol.EntityView` objects containing subsets
               of *qs_ent_1* and *qs_ent_2*. Two entities are later created from
               those views (see :attr:`QSscorer.ent_to_cm_1` and
               :attr:`QSscorer.ent_to_cm_2`)
    
      :param qs_ent_1: See :attr:`QSscorer.qs_ent_1`
      :param qs_ent_2: See :attr:`QSscorer.qs_ent_2`
      :param chem_mapping: See :attr:`QSscorer.chem_mapping`
      :param max_ca_per_chain: See :attr:`QSscorer.max_ca_per_chain_for_cm`
      """
      # make sure name doesn't contain spaces and is unique
      def _FixName(seq_name, seq_names):
        # get rid of spaces and make it unique
        seq_name = seq_name.replace(' ', '-')
        while seq_name in seq_names:
          seq_name += '-'
        return seq_name
      # resulting views into CA entities using CA chain sequences
      ent_view_1 = qs_ent_1.ca_entity.CreateEmptyView()
      ent_view_2 = qs_ent_2.ca_entity.CreateEmptyView()
      ca_chains_1 = qs_ent_1.ca_chains
      ca_chains_2 = qs_ent_2.ca_chains
      # go through all mapped chemical groups
      for group_1, group_2 in chem_mapping.items():
        # MSA with ClustalW
        seq_list = seq.CreateSequenceList()
        # keep sequence-name (must be unique) to view mapping
        seq_to_empty_view = dict()
        for ch in group_1:
          sequence = ca_chains_1[ch].Copy()
          sequence.name = _FixName(qs_ent_1.GetName() + '.' + ch, seq_to_empty_view)
          seq_to_empty_view[sequence.name] = ent_view_1
          seq_list.AddSequence(sequence)
        for ch in group_2:
          sequence = ca_chains_2[ch].Copy()
          sequence.name = _FixName(qs_ent_2.GetName() + '.' + ch, seq_to_empty_view)
          seq_to_empty_view[sequence.name] = ent_view_2
          seq_list.AddSequence(sequence)
        alnc = ClustalW(seq_list, clustalw=clustalw_bin)
    
        # collect aligned residues (list of lists of sequence_count valid residues)
        residue_lists = list()
        sequence_count = alnc.sequence_count
        for col in alnc:
          residues = [col.GetResidue(ir) for ir in range(sequence_count)]
          if all([r.IsValid() for r in residues]):
            residue_lists.append(residues)
        # check number of aligned residues
        if len(residue_lists) < 5:
          raise QSscoreError('Not enough aligned residues.')
        elif max_ca_per_chain > 0:
          residue_lists = _SelectFew(residue_lists, max_ca_per_chain)
        # check what view is for which residue
        res_views = [seq_to_empty_view[alnc.sequences[ir].name] \
                     for ir in range(sequence_count)]
        # add to view (note: only 1 CA atom per residue in here)
        for res_list in residue_lists:
          for res, view in zip(res_list, res_views):
            view.AddResidue(res, mol.ViewAddFlag.INCLUDE_ATOMS)
      # done
      return ent_view_1, ent_view_2
    
    
    def _FindSymmetry(qs_ent_1, qs_ent_2, ent_to_cm_1, ent_to_cm_2, chem_mapping):
      """
      :return: A pair of comparable symmetry groups (for :attr:`QSscorer.symm_1`
               and :attr:`QSscorer.symm_2`) between the two structures.
               Empty lists if no symmetry identified.
      
      :param qs_ent_1: See :attr:`QSscorer.qs_ent_1`
      :param qs_ent_2: See :attr:`QSscorer.qs_ent_2`
      :param ent_to_cm_1: See :attr:`QSscorer.ent_to_cm_1`
      :param ent_to_cm_2: See :attr:`QSscorer.ent_to_cm_2`
      :param chem_mapping: See :attr:`QSscorer.chem_mapping`
      """
      LogInfo('Identifying Symmetry Groups...')
    
      # get possible symmetry groups
      symm_subg_1 = _GetSymmetrySubgroups(qs_ent_1, ent_to_cm_1,
                                          list(chem_mapping.keys()))
      symm_subg_2 = _GetSymmetrySubgroups(qs_ent_2, ent_to_cm_2,
                                          list(chem_mapping.values()))
    
      # check combination of groups
      LogInfo('Selecting Symmetry Groups...')
      # check how many mappings are to be checked for each pair of symmetry groups
      # -> lower number here will speed up worst-case runtime of _GetChainMapping
      # NOTE: this is tailored to speed up brute force all vs all mapping test
      #       for preferred _CheckClosedSymmetry this is suboptimal!
      best_symm = []
      for symm_1, symm_2 in itertools.product(symm_subg_1, symm_subg_2):
        s1 = symm_1[0]
        s2 = symm_2[0]
        if len(s1) != len(s2):
          LogDebug('Discarded', str(symm_1), str(symm_2),
                   ': different size of symmetry groups')
          continue
        count = _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping)
        nr_mapp = count['intra']['mappings'] + count['inter']['mappings']
        LogDebug('OK', str(symm_1), str(symm_2), ': %s mappings' % nr_mapp)
        best_symm.append((nr_mapp, symm_1, symm_2))
    
      for _, symm_1, symm_2 in sorted(best_symm):
        s1 = symm_1[0]
        s2 = symm_2[0]
        group_1 = ent_to_cm_1.Select('cname=%s' % _FixSelectChainNames(s1))
        group_2 = ent_to_cm_2.Select('cname=%s' % _FixSelectChainNames(s2))
        # check if by superposing a pair of chains within the symmetry group to
        # superpose all chains within the symmetry group
        # -> if successful, the symmetry groups are compatible
        closed_symm = _CheckClosedSymmetry(group_1, group_2, symm_1, symm_2,
                                           chem_mapping, 6, 0.8, find_best=False)
    
        if closed_symm:
          return symm_1, symm_2
    
      # nothing found
      LogInfo('No coherent symmetry identified between structures')
      return [], []
    
    
    def _GetChainMapping(ent_1, ent_2, symm_1, symm_2, chem_mapping,
                         max_mappings_extensive):
      """
      :return: Tuple with mapping from *ent_1* to *ent_2* (see
               :attr:`QSscorer.chain_mapping`) and scheme used (see
               :attr:`QSscorer.chain_mapping_scheme`)
    
      :param ent_1: See :attr:`QSscorer.ent_to_cm_1`
      :param ent_2: See :attr:`QSscorer.ent_to_cm_2`
      :param symm_1: See :attr:`QSscorer.symm_1`
      :param symm_2: See :attr:`QSscorer.symm_2`
      :param chem_mapping: See :attr:`QSscorer.chem_mapping`
      :param max_mappings_extensive: See :attr:`QSscorer.max_mappings_extensive`
      """
      LogInfo('Symmetry-groups used in %s: %s' % (ent_1.GetName(), str(symm_1)))
      LogInfo('Symmetry-groups used in %s: %s' % (ent_2.GetName(), str(symm_2)))
    
      # quick check for closed symmetries
      thresholds = [(    'strict', 4, 0.8),
                    (  'tolerant', 6, 0.4),
                    ('permissive', 8, 0.2)]
      for scheme, sup_thr, sup_fract in thresholds:
        # check if by superposing a pair of chains within the symmetry group to
        # superpose all chains of the two oligomers
        # -> this also returns the resulting mapping of chains
        mapping = _CheckClosedSymmetry(ent_1, ent_2, symm_1, symm_2,
                                       chem_mapping, sup_thr, sup_fract)
        if mapping:
          LogInfo('Closed Symmetry with %s parameters' % scheme)
          if scheme == 'permissive':
            LogWarning('Permissive thresholds used for overlap based mapping ' + \
                       'detection: check mapping manually: %s' % mapping)
          return mapping, scheme
      
      # NOTE that what follows below is sub-optimal:
      # - if the two structures don't fit at all, we may map chains rather randomly
      # - we may need a lot of operations to find globally "best" mapping
      # -> COST = O(N^2) * O(N!)
      #    (first = all pairwise chain-superpose, latter = all chain mappings)
      # -> a greedy chain mapping choice algo (pick best RMSD for each one-by-one)
      #    could reduce this to O(N^2) * O(N^2) but it would need to be validated
      # - one could also try some other heuristic based on center of atoms of chains
      #   -> at this point we get a bad mapping anyways...
    
      # if we get here, we will need to check many combinations of mappings
      # -> check how many mappings must be checked and limit
      count = _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping)
      LogInfo('Intra Symmetry-group mappings to check: %s' \
              % count['intra']['mappings'])
      LogInfo('Inter Symmetry-group mappings to check: %s' \
              % count['inter']['mappings'])
      nr_mapp = count['intra']['mappings'] + count['inter']['mappings']
      if nr_mapp > max_mappings_extensive:
        raise QSscoreError('Too many possible mappings: %s' % nr_mapp)
    
      # to speed up the computations we cache chain views and RMSDs
      cached_rmsd = _CachedRMSD(ent_1, ent_2)
    
      # get INTRA symmetry group chain mapping
      check = 0
      intra_mappings = [] # list of (RMSD, c1, c2, mapping) tuples (best superpose)
      # limit chem mapping to reference symmetry group
      ref_symm_1 = symm_1[0]
      ref_symm_2 = symm_2[0]
      asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2)
      # for each chemically identical group
      for g1, g2 in asu_chem_mapping.items():
        # try to superpose all possible pairs
        for c1, c2 in itertools.product(g1, g2):
          # get superposition transformation
          LogVerbose('Superposing chains: %s, %s' % (c1, c2))
          res = cached_rmsd.GetSuperposition(c1, c2)
          # compute RMSD of possible mappings
          cur_mappings = [] # list of (RMSD, mapping) tuples
          for mapping in _ListPossibleMappings(c1, c2, asu_chem_mapping):
            check += 1
            chains_rmsd = cached_rmsd.GetMappedRMSD(mapping, res.transformation)
            cur_mappings.append((chains_rmsd, mapping))
            LogVerbose(str(mapping), str(chains_rmsd))
          best_rmsd, best_mapp = min(cur_mappings)
          intra_mappings.append((best_rmsd, c1, c2, best_mapp))
      # best chain-chain superposition defines the intra asu mapping
      _, intra_asu_c1, intra_asu_c2, intra_asu_mapp = min(intra_mappings)
    
      # if only one asu is present in any of the complexes, we're done
      if len(symm_1) == 1 or len(symm_2) == 1:
        mapping = intra_asu_mapp
      else:
        # the mapping is the element position within the asu chain list
        # -> this speed up a lot, assuming that the order of chain in asu groups
        #    is following the order of symmetry operations
        index_asu_c1 = ref_symm_1.index(intra_asu_c1)
        index_asu_c2 = ref_symm_2.index(intra_asu_c2)
        index_mapp = {ref_symm_1.index(s1): ref_symm_2.index(s2) \
                      for s1, s2 in intra_asu_mapp.items()}
        LogInfo('Intra symmetry-group mapping: %s' % str(intra_asu_mapp))
    
        # get INTER symmetry group chain mapping
        # we take the first symmetry group from the complex having the most
        if len(symm_1) < len(symm_2):
          symm_combinations = list(itertools.product(symm_1, [symm_2[0]]))
        else:
          symm_combinations = list(itertools.product([symm_1[0]], symm_2))
    
        full_asu_mapp = {tuple(symm_1): tuple(symm_2)}
        full_mappings = [] # list of (RMSD, mapping) tuples
        for s1, s2 in symm_combinations:
          # get superposition transformation (we take best chain-pair in asu)
          LogVerbose('Superposing symmetry-group: %s, %s in %s, %s' \
                     % (s1[index_asu_c1], s2[index_asu_c2], s1, s2))
          res = cached_rmsd.GetSuperposition(s1[index_asu_c1], s2[index_asu_c2])
          # compute RMSD of possible mappings
          for asu_mapp in _ListPossibleMappings(s1, s2, full_asu_mapp):
            check += 1
            # need to extract full chain mapping (use indexing)
            mapping = {}
            for a, b in asu_mapp.items():
              for id_a, id_b in index_mapp.items():
                mapping[a[id_a]] = b[id_b]
            chains_rmsd = cached_rmsd.GetMappedRMSD(mapping, res.transformation)
            full_mappings.append((chains_rmsd, mapping))
            LogVerbose(str(mapping), str(chains_rmsd))
    
        if check != nr_mapp:
          LogWarning('Mapping number estimation was wrong') # sanity check
    
        # return best (lowest RMSD) mapping
        mapping = min(full_mappings, key=lambda x: x[0])[1]
    
      LogWarning('Extensive search used for mapping detection (fallback). This ' + \
                 'approach has known limitations. Check mapping manually: %s' \
                 % mapping)
      return mapping, 'extensive'
    
    
    def _GetSymmetrySubgroups(qs_ent, ent, chem_groups):
      """
      Identify the symmetry (either cyclic C or dihedral D) of the protein and find
      all possible symmetry subgroups. This is done testing all combination of chain
      superposition and clustering them by the angles (D) or the axis (C) of the Rt
      operator.
    
      Groups of superposition which can fully reconstruct the structure are possible
      symmetry subgroups.
    
      :param qs_ent: Entity with cached angles and axis.
      :type qs_ent:  :class:`QSscoreEntity`
      :param ent: Entity from which to extract chains (perfect alignment assumed
                  for superposition as in :attr:`QSscorer.ent_to_cm_1`).
      :type ent:  :class:`EntityHandle` or :class:`EntityView`
      :param chem_groups: List of tuples/lists of chain names in *ent*. Each list
                          contains all chains belonging to a chem. group (could be
                          from :attr:`QSscoreEntity.chem_groups` or from "keys()"
                          or "values()" of :attr:`QSscorer.chem_mapping`)
    
      :return: A list of possible symmetry subgroups (each in same format as
               :attr:`QSscorer.symm_1`). If no symmetry is found, we return a list
               with a single symmetry subgroup with a single group with all chains.
      """
      # get angles / axis for pairwise transformations within same chem. group
      angles = {}
      axis = {}
      for cnames in chem_groups:
        for c1, c2 in itertools.combinations(cnames, 2):
          cur_angles = qs_ent.GetAngles(c1, c2)
          if not np.any(np.isnan(cur_angles)):
            angles[(c1,c2)] = cur_angles
          cur_axis = qs_ent.GetAxis(c1, c2)
          if not np.any(np.isnan(cur_axis)):
            axis[(c1,c2)] = cur_axis
    
      # cluster superpositions angles at different thresholds
      symm_groups = []
      LogVerbose('Possible symmetry-groups for: %s' % ent.GetName())
      for angle_thr in np.arange(0.1, 1, 0.1):
        d_symm_groups = _GetDihedralSubgroups(ent, chem_groups, angles, angle_thr)
        if d_symm_groups:
          for group in d_symm_groups:
            if group not in symm_groups:
              symm_groups.append(group)
              LogVerbose('Dihedral: %s' % group)
          LogInfo('Symmetry threshold %.1f used for angles of %s' \
                  % (angle_thr, ent.GetName()))
          break
      
      # cluster superpositions axis at different thresholds
      for axis_thr in np.arange(0.1, 1, 0.1):
        c_symm_groups = _GetCyclicSubgroups(ent, chem_groups, axis, axis_thr)
        if c_symm_groups:
          for group in c_symm_groups:
            if group not in symm_groups:
              symm_groups.append(group)
              LogVerbose('Cyclic: %s' % group)
          LogInfo('Symmetry threshold %.1f used for axis of %s' \
                  % (axis_thr, ent.GetName()))
          break
    
      # fall back to single "group" containing all chains if none found
      if not symm_groups:
        LogInfo('No symmetry-group detected in %s' % ent.GetName())
        symm_groups = [[tuple([c for g in chem_groups for c in g])]]
    
      return symm_groups
    
    def _GetDihedralSubgroups(ent, chem_groups, angles, angle_thr):
      """
      :return: Dihedral subgroups for :func:`_GetSymmetrySubgroups`
               (same return type as there). Empty list if fail.
    
      :param ent: See :func:`_GetSymmetrySubgroups`
      :param chem_groups: See :func:`_GetSymmetrySubgroups`
      :param angles: :class:`dict` (key = chain-pair-tuple, value = Euler angles)
      :param angle_thr: Euler angles distance threshold for clustering (float).
      """
      # cluster superpositions angles
      if len(angles) == 0:
        # nothing to be done here
        return []
      else:
        same_angles = _ClusterData(angles, angle_thr, _AngleArrayDistance)
    
      # get those which are non redundant and covering all chains
      symm_groups = []
      for clst in list(same_angles.values()):
        group = list(clst.keys())
        if _ValidChainGroup(group, ent):
          if len(chem_groups) > 1:
            # if hetero, we want to group toghether different chains only
            symm_groups.append(list(zip(*group)))
          else:
            # if homo, we also want pairs
            symm_groups.append(group)
            symm_groups.append(list(zip(*group)))
      return symm_groups
    
    def _GetCyclicSubgroups(ent, chem_groups, axis, axis_thr):
      """
      :return: Cyclic subgroups for :func:`_GetSymmetrySubgroups`
               (same return type as there). Empty list if fail.
    
      :param ent: See :func:`_GetSymmetrySubgroups`
      :param chem_groups: See :func:`_GetSymmetrySubgroups`
      :param angles: :class:`dict` (key = chain-pair-tuple, value = rotation axis)
      :param angle_thr: Axis distance threshold for clustering (float).
      """
      # cluster superpositions axis
      if len(axis) == 0:
        # nothing to be done here
        return []
      else:
        same_axis = _ClusterData(axis, axis_thr, _AxisDistance)
    
      # use to get grouping
      symm_groups = []
      for clst in list(same_axis.values()):
        all_chain = [item for sublist in list(clst.keys()) for item in sublist]
        if len(set(all_chain)) == ent.chain_count:
          # if we have an hetero we can exploit cyclic symmetry for grouping
          if len(chem_groups) > 1:
            ref_chem_group = chem_groups[0]
            # try two criteria for grouping
            cyclic_group_closest = []
            cyclic_group_iface = []
            for c1 in ref_chem_group:
              group_closest = [c1]
              group_iface = [c1]
              for chains in chem_groups[1:]:
                # center of atoms distance
                closest = _GetClosestChain(ent, c1, chains)
                # chain with bigger interface
                closest_iface = _GetClosestChainInterface(ent, c1, chains)
                group_closest.append(closest)
                group_iface.append(closest_iface)
              cyclic_group_closest.append(tuple(group_closest))
              cyclic_group_iface.append(tuple(group_iface))
            if _ValidChainGroup(cyclic_group_closest, ent):
              symm_groups.append(cyclic_group_closest)
            if _ValidChainGroup(cyclic_group_iface, ent):
              symm_groups.append(cyclic_group_iface)
          # if it is a homo, there's not much we can group
          else:
            symm_groups.append(chem_groups)
      return symm_groups
    
    def _ClusterData(data, thr, metric):
      """Wrapper for fclusterdata to get dict of clusters.
      
      :param data: :class:`dict` (keys for ID, values used for clustering)
      :return: :class:`dict` {cluster_idx: {data-key: data-value}}
      """
      # special case length 1
      if len(data) == 1:
        return {0: {list(data.keys())[0]: list(data.values())[0]} }
      # do the clustering
      cluster_indices = fclusterdata(np.asarray(list(data.values())), thr,
                                     method='complete', criterion='distance',
                                     metric=metric)
      # fclusterdata output is cluster ids -> put into dict of clusters
      res = {}
      for cluster_idx, data_key in zip(cluster_indices, list(data.keys())):
        if not cluster_idx in res:
          res[cluster_idx] = {}
        res[cluster_idx][data_key] = data[data_key]
      return res
    
    def _AngleArrayDistance(u, v):
      """
      :return: Average angular distance of two arrays of angles.
      :param u: Euler angles.
      :param v: Euler angles.
      """
      dist = []
      for a,b in zip(u,v):
        delta = abs(a-b)
        if delta > np.pi:
          delta = abs(2*np.pi - delta)
        dist.append(delta)
      return np.mean(dist)
    
    def _AxisDistance(u, v):
      """
      :return: Euclidean distance between two rotation axes. Axes can point in
               either direction so we ensure to use the closer one.
      :param u: Rotation axis.
      :param v: Rotation axis.
      """
      # get axes as arrays (for convenience)
      u = np.asarray(u)
      v = np.asarray(v)
      # get shorter of two possible distances (using v or -v)
      dv1 = u - v
      dv2 = u + v
      d1 = np.dot(dv1, dv1)
      d2 = np.dot(dv2, dv2)
      return np.sqrt(min(d1, d2))
    
    def _GetClosestChain(ent, ref_chain, chains):
      """
      :return: Chain closest to *ref_chain* based on center of atoms distance.
      :rtype:  :class:`str`
      :param ent: See :func:`_GetSymmetrySubgroups`
      :param ref_chain: We look for chains closest to this one
      :type ref_chain:  :class:`str`
      :param chains: We only consider these chains
      :type chains:  :class:`list` of :class:`str`
      """
      contacts = []
      ref_center = ent.FindChain(ref_chain).center_of_atoms
      for ch in chains:
        center = ent.FindChain(ch).center_of_atoms
        contacts.append((geom.Distance(ref_center, center), ch))
      closest_chain = min(contacts)[1]
      return closest_chain
    
    def _GetClosestChainInterface(ent, ref_chain, chains):
      """
      :return: Chain with biggest interface (within 10 A) to *ref_chain*.
      :rtype:  :class:`str`
      :param ent: See :func:`_GetSymmetrySubgroups`
      :param ref_chain: We look for chains closest to this one
      :type ref_chain:  :class:`str`
      :param chains: We only consider these chains
      :type chains:  :class:`list` of :class:`str`
      """
      # NOTE: this is computed on a subset of the full biounit and might be
      # inaccurate. Also it could be extracted from QSscoreEntity.contacts.
      closest = []
      for ch in chains:
        iface_view = ent.Select('cname="%s" and 10 <> [cname="%s"]' \
                                % (ref_chain, ch))
        nr_res = iface_view.residue_count
        closest.append((nr_res, ch))
      closest_chain = max(closest)[1]
      return closest_chain
    
    def _ValidChainGroup(group, ent):
      """
      :return: True, if *group* has unique chain names and as many chains as *ent*
      :rtype:  :class:`bool`
      :param group: Symmetry groups to check
      :type group:  Same as :attr:`QSscorer.symm_1`
      :param ent: See :func:`_GetSymmetrySubgroups`
      """
      all_chain = [item for sublist in group for item in sublist]
      if len(all_chain) == len(set(all_chain)) and\
         len(all_chain) == ent.chain_count:
        return True
      return False
    
    def _LimitChemMapping(chem_mapping, limit_1, limit_2):
      """
      :return: Chem. mapping containing only chains in *limit_1* and *limit_2*
      :rtype:  Same as :attr:`QSscorer.chem_mapping`
      :param chem_mapping: See :attr:`QSscorer.chem_mapping`
      :param limit_1: Limits chain names in chem_mapping.keys()
      :type limit_1:  List/tuple of strings
      :param limit_2: Limits chain names in chem_mapping.values()
      :type limit_2:  List/tuple of strings
      """
      # use set intersection to keep only mapping for chains in limit_X
      limit_1_set = set(limit_1)
      limit_2_set = set(limit_2)
      asu_chem_mapping = dict()
      for key, value in chem_mapping.items():
        new_key = tuple(set(key) & limit_1_set)
        if new_key:
          asu_chem_mapping[new_key] = tuple(set(value) & limit_2_set)
      return asu_chem_mapping
    
    
    def _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping):
      """
      :return: Dictionary of number of mappings and superpositions to be performed.
               Returned as *result[X][Y] = number* with X = "intra" or "inter" and
               Y = "mappings" or "superpositions". The idea is that for each
               pairwise superposition we check all possible mappings.
               We can check the combinations within (intra) a symmetry group and
               once established, we check the combinations between different (inter)
               symmetry groups.
      :param symm_1: See :attr:`QSscorer.symm_1`
      :param symm_2: See :attr:`QSscorer.symm_2`
      :param chem_mapping: See :attr:`QSscorer.chem_mapping`
      """
      # setup
      c = {}
      c['intra'] = {}
      c['inter'] = {}
      c['intra']['mappings'] = 0
      c['intra']['superpositions'] = 0
      c['inter']['mappings'] = 0
      c['inter']['superpositions'] = 0
      # intra ASU mappings within reference symmetry groups
      ref_symm_1 = symm_1[0]
      ref_symm_2 = symm_2[0]
      asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2)
      for g1, g2 in asu_chem_mapping.items():
        chain_superpositions = len(g1) * len(g2)
        c['intra']['superpositions'] += chain_superpositions
        map_per_sup = _PermutationOrCombinations(g1[0], g2[0], asu_chem_mapping)
        c['intra']['mappings'] += chain_superpositions * map_per_sup
      if len(symm_1) == 1 or len(symm_2) == 1:
        return c
      # inter ASU mappings
      asu_superposition = min(len(symm_1), len(symm_2))
      c['inter']['superpositions'] = asu_superposition
      asu = {tuple(symm_1): tuple(symm_2)}
      map_per_sup = _PermutationOrCombinations(ref_symm_1, ref_symm_2, asu)
      c['inter']['mappings'] = asu_superposition * map_per_sup
      return c
    
    def _PermutationOrCombinations(sup1, sup2, chem_mapping):
      """Should match len(_ListPossibleMappings(sup1, sup2, chem_mapping))."""
      # remove superposed elements, put smallest complex as key
      chem_map = {}
      for a,b in chem_mapping.items():
        new_a = tuple([x for x in a if x != sup1])
        new_b = tuple([x for x in b if x != sup2])
        chem_map[new_a] = new_b
      mapp_nr = 1.0
      for a, b in chem_map.items():
        if len(a) == len(b):
          mapp_nr *= factorial(len(a))
        elif len(a) < len(b):
          mapp_nr *= binom(len(b), len(a))
        elif len(a) > len(b):
          mapp_nr *= binom(len(a), len(b))
      return int(mapp_nr)
    
    def _ListPossibleMappings(sup1, sup2, chem_mapping):
      """
      Return a flat list of all possible mappings given *chem_mapping* and keeping
      mapping of *sup1* and *sup2* fixed. For instance if elements are chain names
      this is all the mappings to check for a given superposition.
    
      Elements in first complex are defined by *chem_mapping.keys()* (list of list
      of elements) and elements in second complex by *chem_mapping.values()*. If
      complexes don't have same number of elements, we map only elements for the one
      with less. Also mapping is only between elements of mapped groups according to
      *chem_mapping*.
               
      :rtype:  :class:`list` of :class:`dict` (key = element in chem_mapping-key,
               value = element in chem_mapping-value)
      :param sup1: Element for which mapping is fixed.
      :type sup1:  Like element in chem_mapping-key
      :param sup2: Element for which mapping is fixed.
      :type sup2:  Like element in chem_mapping-value
      :param chem_mapping: Defines mapping between groups of elements (e.g. result
                           of :func:`_LimitChemMapping`).
      :type chem_mapping:  :class:`dict` with key / value = :class:`tuple`
    
      :raises: :class:`QSscoreError` if reference complex (first one or one with
               less elements) has more elements for any given mapped group.
      """
      # find smallest complex
      chain1 = [i for s in list(chem_mapping.keys()) for i in s]
      chain2 = [i for s in list(chem_mapping.values()) for i in s]
      swap = False
      if len(chain1) > len(chain2):
        swap = True
      # remove superposed elements, put smallest complex as key
      chem_map = {}
      for a, b in chem_mapping.items():
        new_a = tuple([x for x in a if x != sup1])
        new_b = tuple([x for x in b if x != sup2])
        if swap:
          chem_map[new_b] = new_a
        else:
          chem_map[new_a] = new_b
      # generate permutations or combinations of chemically
      # equivalent chains
      chem_perm = []
      chem_ref = []
      for a, b in chem_map.items():
        if len(a) == len(b):
          chem_perm.append(list(itertools.permutations(b)))
          chem_ref.append(a)
        elif len(a) < len(b):
          chem_perm.append(list(itertools.combinations(b, len(a))))
          chem_ref.append(a)
        else:
          raise QSscoreError('Impossible to define reference group: %s' \
                             % str(chem_map))
      # save the list of possible mappings
      mappings = []
      flat_ref = [i for s in chem_ref for i in s]
      for perm in itertools.product(*chem_perm):
        flat_perm = [i for s in perm for i in s]
        d = {c1: c2 for c1, c2 in zip(flat_ref, flat_perm)}
        if swap:
          d = {v: k for k, v in list(d.items())}
        d.update({sup1: sup2})
        mappings.append(d)
      return mappings
    
    
    def _CheckClosedSymmetry(ent_1, ent_2, symm_1, symm_2, chem_mapping,
                             sup_thr=4, sup_fract=0.8, find_best=True):
      """
      Quick check if we can superpose two chains and get a mapping for all other
      chains using the same transformation. The mapping is defined by sufficient
      overlap of the transformed chain of *ent_1* onto another chain in *ent_2*.
    
      :param ent_1: Entity to map to *ent_2* (perfect alignment assumed between
                    chains of same chem. group as in :attr:`QSscorer.ent_to_cm_1`).
                    Views are ok but only to select full chains!
      :param ent_2: Entity to map to (perfect alignment assumed between
                    chains of same chem. group as in :attr:`QSscorer.ent_to_cm_2`).
                    Views are ok but only to select full chains!
      :param symm_1: Symmetry groups to use. We only superpose chains within
                     reference symmetry group of *symm_1* and *symm_2*.
                     See :attr:`QSscorer.symm_1`
      :param symm_2: See :attr:`QSscorer.symm_2`
      :param chem_mapping: See :attr:`QSscorer.chem_mapping`.
                           All chains in *ent_1* / *ent_2* must be listed here!
      :param sup_thr: Distance around transformed chain in *ent_1* to check for
                      overlap.
      :type sup_thr:  :class:`float`
      :param sup_fract: Fraction of atoms in chain of *ent_2* that must be
                        overlapped for overlap to be sufficient.
      :type sup_fract:  :class:`float`
      :param find_best: If True, we look for best mapping according to
                        :func:`_GetMappedRMSD`. Otherwise, we return first suitable
                        mapping.
      :type find_best:  :class:`bool`
    
      :return: Mapping from *ent_1* to *ent_2* or None if none found. Mapping, if
               found, is as in :attr:`QSscorer.chain_mapping`.
      :rtype:  :class:`dict` (:class:`str` / :class:`str`)
      """
      # limit chem mapping to reference symmetry group
      ref_symm_1 = symm_1[0]
      ref_symm_2 = symm_2[0]
      asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2)
      # for each chemically identical group
      rmsd_mappings = []
      for g1, g2 in asu_chem_mapping.items():
        # try to superpose all possible pairs
        # -> note that some chain-chain combinations may work better than others
        #    to superpose the full oligomer (e.g. if some chains are open/closed)
        for c1, c2 in itertools.product(g1, g2):
          # get superposition transformation
          chain_1 = ent_1.Select('cname="%s"' % c1)
          chain_2 = ent_2.Select('cname="%s"' % c2)
          res = mol.alg.SuperposeSVD(chain_1, chain_2, apply_transform=False)
          # look for overlaps
          mapping = _GetSuperpositionMapping(ent_1, ent_2, chem_mapping,
                                             res.transformation, sup_thr,
                                             sup_fract)
          if not mapping:
            continue
          # early abort if we only want the first one
          if not find_best:
            return mapping
          else:
            # get RMSD for sorting
            rmsd = _GetMappedRMSD(ent_1, ent_2, mapping, res.transformation)
            rmsd_mappings.append((rmsd, mapping))
      # return best mapping
      if rmsd_mappings:
        return min(rmsd_mappings, key=lambda x: x[0])[1]
      else:
        return None
    
    def _GetSuperpositionMapping(ent_1, ent_2, chem_mapping, transformation,
                                 sup_thr, sup_fract):
      """
      :return: Dict with chain mapping from *ent_1* to *ent_2* or None if failed
               (see :func:`_CheckClosedSymmetry`).
      :param ent_1: See :func:`_CheckClosedSymmetry`
      :param ent_2: See :func:`_CheckClosedSymmetry`
      :param chem_mapping: See :func:`_CheckClosedSymmetry`
      :param transformation: Superposition transformation to be applied to *ent_1*.
      :param sup_thr: See :func:`_CheckClosedSymmetry`
      :param sup_fract: See :func:`_CheckClosedSymmetry`
      """
      # NOTE: this seems to be the comput. most expensive part in QS scoring
      # -> it could be moved to C++ for speed-up
      # -> the next expensive bits are ClustalW and GetContacts btw...
    
      # swap if needed (ent_1 must be shorter or same)
      if ent_1.chain_count > ent_2.chain_count:
        swap = True
        ent_1, ent_2 = ent_2, ent_1
        transformation = geom.Invert(transformation)
        chem_pairs = list(zip(list(chem_mapping.values()), list(chem_mapping.keys())))
      else:
        swap = False
        chem_pairs = iter(chem_mapping.items())
      # sanity check
      if ent_1.chain_count == 0:
        return None
      # extract valid partners for each chain in ent_1
      chem_partners = dict()
      for cg1, cg2 in chem_pairs:
        for ch in cg1:
          chem_partners[ch] = set(cg2)
      # get mapping for each chain in ent_1
      mapping = dict()
      mapped_chains = set()
      for ch_1 in ent_1.chains:
        # get all neighbors split by chain (NOTE: this muight be moved to C++)
        ch_atoms = {ch_2.name: set() for ch_2 in ent_2.chains}
        for a_1 in ch_1.handle.atoms:
          transformed_pos = geom.Vec3(transformation * geom.Vec4(a_1.pos))
          a_within = ent_2.FindWithin(transformed_pos, sup_thr)
          for a_2 in a_within:
            ch_atoms[a_2.chain.name].add(a_2.hash_code)
        # get one with most atoms in overlap
        max_num, max_name = max((len(atoms), name)
                                for name, atoms in ch_atoms.items())
        # early abort if overlap fraction not good enough
        ch_2 = ent_2.FindChain(max_name)
        if max_num == 0 or max_num / float(ch_2.handle.atom_count) < sup_fract:
          return None
        # early abort if mapped to chain of different chem. group
        ch_1_name = ch_1.name
        if ch_1_name not in chem_partners:
          raise RuntimeError("Chem. mapping doesn't contain all chains!")
        if max_name not in chem_partners[ch_1_name]:
          return None
        # early abort if multiple ones mapped to same chain
        if max_name in mapped_chains:
          return None
        # set mapping
        mapping[ch_1_name] = max_name
        mapped_chains.add(max_name)
      # unswap if needed and return
      if swap:
        mapping = {v: k for k, v in mapping.items()}
      return mapping
    
    def _GetMappedRMSD(ent_1, ent_2, chain_mapping, transformation):
      """
      :return: RMSD between complexes considering chain mapping.
      :param ent_1: Entity mapped to *ent_2* (perfect alignment assumed between
                    mapped chains as in :attr:`QSscorer.ent_to_cm_1`).
      :param ent_2: Entity which was mapped to (perfect alignment assumed between
                    mapped chains as in :attr:`QSscorer.ent_to_cm_2`).
      :param chain_mapping: See :attr:`QSscorer.chain_mapping`
      :param transformation: Superposition transformation to be applied to *ent_1*.
      """
      # collect RMSDs and atom counts chain by chain and combine afterwards
      rmsds = []
      atoms = []
      for c1, c2 in chain_mapping.items():
        # get views and atom counts
        chain_1 = ent_1.Select('cname="%s"' % c1)
        chain_2 = ent_2.Select('cname="%s"' % c2)
        atom_count = chain_1.atom_count
        if atom_count != chain_2.atom_count:
          raise RuntimeError('Chains in _GetMappedRMSD must be perfectly aligned!')
        # get RMSD
        rmsd = mol.alg.CalculateRMSD(chain_1, chain_2, transformation)
        # update lists
        rmsds.append(rmsd)
        atoms.append(float(atom_count))
      # combine (reminder: RMSD = sqrt(sum(atom_distance^2)/atom_count))
      rmsd = np.sqrt( sum([a * r**2 for a, r in zip(atoms, rmsds)]) / sum(atoms) )
      return rmsd
    
    class _CachedRMSD:
      """Helper object for repetitive RMSD calculations.
      Meant to speed up :func:`_GetChainMapping` but could also be used to replace
      :func:`_GetMappedRMSD` in :func:`_CheckClosedSymmetry`.
    
      :param ent_1: See :attr:`QSscorer.ent_to_cm_1`
      :param ent_2: See :attr:`QSscorer.ent_to_cm_2`
      """
      def __init__(self, ent_1, ent_2):
        # initialize caches and keep entities
        self.ent_1 = ent_1
        self.ent_2 = ent_2
        self._chain_views_1 = dict()
        self._chain_views_2 = dict()
        self._pair_rmsd = dict()  # key = (c1,c2), value = (atom_count,rmsd)
    
      def GetChainView1(self, cname):
        """Get cached view on chain *cname* for :attr:`ent_1`."""
        if cname not in self._chain_views_1:
          self._chain_views_1[cname] = self.ent_1.Select('cname="%s"' % cname)
        return self._chain_views_1[cname]
    
      def GetChainView2(self, cname):
        """Get cached view on chain *cname* for :attr:`ent_2`."""
        if cname not in self._chain_views_2:
          self._chain_views_2[cname] = self.ent_2.Select('cname="%s"' % cname)
        return self._chain_views_2[cname]
    
      def GetSuperposition(self, c1, c2):
        """Get superposition result (no change in entities!) for *c1* to *c2*.
        This invalidates cached RMSD results used in :func:`GetMappedRMSD`.
    
        :param c1: chain name for :attr:`ent_1`.
        :param c2: chain name for :attr:`ent_2`.
        """
        # invalidate _pair_rmsd
        self._pair_rmsd = dict()
        # superpose
        chain_1 = self.GetChainView1(c1)
        chain_2 = self.GetChainView2(c2)
        if chain_1.atom_count != chain_2.atom_count:
          raise RuntimeError('Chains in GetSuperposition not perfectly aligned!')
        return mol.alg.SuperposeSVD(chain_1, chain_2, apply_transform=False)
    
      def GetMappedRMSD(self, chain_mapping, transformation):
        """
        :return: RMSD between complexes considering chain mapping.
        :param chain_mapping: See :attr:`QSscorer.chain_mapping`.
        :param transformation: Superposition transformation (e.g. res.transformation
                               for res = :func:`GetSuperposition`).
        """
        # collect RMSDs and atom counts chain by chain and combine afterwards
        rmsds = []
        atoms = []
        for c1, c2 in chain_mapping.items():
          # cached?
          if (c1, c2) in self._pair_rmsd:
            atom_count, rmsd = self._pair_rmsd[(c1, c2)]
          else:
            # get views and atom counts
            chain_1 = self.GetChainView1(c1)
            chain_2 = self.GetChainView2(c2)
            atom_count = chain_1.atom_count
            if atom_count != chain_2.atom_count:
              raise RuntimeError('Chains in GetMappedRMSD not perfectly aligned!')
            # get RMSD
            rmsd = mol.alg.CalculateRMSD(chain_1, chain_2, transformation)
            self._pair_rmsd[(c1, c2)] = (atom_count, rmsd)
          # update lists
          rmsds.append(rmsd)
          atoms.append(float(atom_count))
        # combine (reminder: RMSD = sqrt(sum(atom_distance^2)/atom_count))
        rmsd = np.sqrt( sum([a * r**2 for a, r in zip(atoms, rmsds)]) / sum(atoms) )
        return rmsd
    
    
    def _CleanUserSymmetry(symm, ent):
      """Clean-up user provided symmetry.
    
      :param symm: Symmetry group as in :attr:`QSscorer.symm_1`
      :param ent: Entity from which to extract chain names
      :type ent:  :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView`
      :return: New symmetry group limited to chains in sub-structure *ent*
               (see :attr:`QSscorer.symm_1`). Empty list if invalid symmetry.
      """
      # restrict symm to only contain chains in ent
      chain_names = set([ch.name for ch in ent.chains])
      new_symm = list()
      for symm_group in symm:
        new_group = tuple(ch for ch in symm_group if ch in chain_names)
        if new_group:
          new_symm.append(new_group)
      # report it
      if new_symm != symm:
        LogInfo("Cleaned user symmetry for %s: %s" % (ent.GetName(), new_symm))
      # do all groups have same length?
      lengths = [len(symm_group) for symm_group in new_symm]
      if lengths[1:] != lengths[:-1]:
        LogWarning('User symmetry group of different sizes for %s. Ignoring it!' \
                   % (ent.GetName()))
        return []
      # do we cover all chains?
      s_chain_names = set([ch for symm_group in new_symm for ch in symm_group])
      if len(s_chain_names) != sum(lengths):
        LogWarning('User symmetry group for %s has duplicate chains. Ignoring it!' \
                   % (ent.GetName()))
        return []
      if s_chain_names != chain_names:
        LogWarning('User symmetry group for %s is missing chains. Ignoring it!' \
                   % (ent.GetName()))
        return []
      # ok all good
      return new_symm
    
    def _AreValidSymmetries(symm_1, symm_2):
      """Check symmetry pair for major problems.
    
      :return: False if any of the two is empty or if they're compatible in size.
      :rtype:  :class:`bool`
      """
      if not symm_1 or not symm_2:
        return False
      if len(symm_1) != 1 or len(symm_2) != 1:
        if not len(symm_1[0]) == len(symm_2[0]):
          LogWarning('Symmetry groups of different sizes. Ignoring them!')
          return False
      return True
    
    def _GetMappedAlignments(ent_1, ent_2, chain_mapping, res_num_alignment):
      """
      :return: Alignments of 2 structures given chain mapping
               (see :attr:`QSscorer.alignments`).
      :param ent_1: Entity containing all chains in *chain_mapping.keys()*.
                    Views to this entity attached to first sequence of each aln.
      :param ent_2: Entity containing all chains in *chain_mapping.values()*.
                    Views to this entity attached to second sequence of each aln.
      :param chain_mapping: See :attr:`QSscorer.chain_mapping`
      :param res_num_alignment: See :attr:`QSscorer.res_num_alignment`
      """
      alns = list()
      for ch_1_name in sorted(chain_mapping):
        # get both sequences incl. attached view
        ch_1 = ent_1.FindChain(ch_1_name)
        ch_2 = ent_2.FindChain(chain_mapping[ch_1_name])
        if res_num_alignment:
          max_res_num = max([r.number.GetNum() for r in ch_1.residues] +
                            [r.number.GetNum() for r in ch_2.residues])
          ch1_aln = ["-"] * max_res_num
          ch2_aln = ["-"] * max_res_num
          for res in ch_1.residues:
            ch1_aln[res.number.GetNum() - 1] = res.GetOneLetterCode()
          ch1_aln = "".join(ch1_aln)
          seq_1 = seq.CreateSequence(ch_1.name, str(ch1_aln))
          seq_1.AttachView(ch_1.Select(""))
          for res in ch_2.residues:
            ch2_aln[res.number.GetNum() - 1] = res.GetOneLetterCode()
          ch2_aln = "".join(ch2_aln)
          seq_2 = seq.CreateSequence(ch_2.name, str(ch2_aln))
          seq_2.AttachView(ch_2.Select(""))
          # Create alignment
          aln = seq.CreateAlignment()
          aln.AddSequence(seq_1)
          aln.AddSequence(seq_2)
        else:
          seq_1 = seq.SequenceFromChain(ch_1.name, ch_1)
          seq_2 = seq.SequenceFromChain(ch_2.name, ch_2)
          # align them
          aln = _AlignAtomSeqs(seq_1, seq_2)
        if aln:
          alns.append(aln)
      return alns
    
    def _GetMappedResidues(alns):
      """
      :return: Mapping of shared residues in *alns* (with views attached)
               (see :attr:`QSscorer.mapped_residues`).
      :param alns: See :attr:`QSscorer.alignments`
      """
      mapped_residues = dict()
      for aln in alns:
        # prepare dict for c1
        c1 = aln.GetSequence(0).name
        mapped_residues[c1] = dict()
        # get shared residues
        v1, v2 = seq.ViewsFromAlignment(aln)
        for res_1, res_2 in zip(v1.residues, v2.residues):
          r1 = res_1.number.num
          r2 = res_2.number.num
          mapped_residues[c1][r1] = r2
    
      return mapped_residues
    
    def _GetExtraWeights(contacts, done, mapped_residues):
      """Return sum of extra weights for contacts of chains in set and not in done.
      :return: Tuple (weight_extra_mapped, weight_extra_all).
               weight_extra_mapped only sums if both cX,rX in mapped_residues
               weight_extra_all sums all
      :param contacts: See :func:`GetContacts` for first entity
      :param done: List of (c1, c2, r1, r2) tuples to ignore
      :param mapped_residues: See :func:`_GetMappedResidues`
      """
      weight_extra_mapped = 0
      weight_extra_non_mapped = 0
      for c1 in contacts:
        for c2 in contacts[c1]:
          for r1 in contacts[c1][c2]:
            for r2 in contacts[c1][c2][r1]:
              if (c1, c2, r1, r2) not in done:
                weight = _weight(contacts[c1][c2][r1][r2])
                if     c1 in mapped_residues and r1 in mapped_residues[c1] \
                   and c2 in mapped_residues and r2 in mapped_residues[c2]:
                  weight_extra_mapped += weight
                else:
                  weight_extra_non_mapped += weight
      return weight_extra_mapped, weight_extra_mapped + weight_extra_non_mapped
    
    def _GetScores(contacts_1, contacts_2, mapped_residues, chain_mapping):
      """Get QS scores (see :class:`QSscorer`).
    
      Note that if some chains are not to be considered at all, they must be removed
      from *contacts_1* / *contacts_2* prior to calling this.
    
      :param contacts_1: See :func:`GetContacts` for first entity
      :param contacts_2: See :func:`GetContacts` for second entity
      :param mapped_residues: See :func:`_GetMappedResidues`
      :param chain_mapping: Maps any chain name in *mapped_residues* to chain name
                            for *contacts_2*.
      :type chain_mapping:  :class:`dict` (:class:`str` / :class:`str`)
      :return: Tuple (QS_best, QS_global) (see :attr:`QSscorer.best_score` and
               see :attr:`QSscorer.global_score`)
      """
      # keep track of considered contacts as set of (c1,c2,r1,r2) tuples
      done_1 = set()
      done_2 = set()
      weighted_scores = 0
      weight_sum = 0
      # naming cXY, rXY: X = 1/2 for contact, Y = 1/2/T for mapping (T = tmp)
      # -> d1 = contacts_1[c11][c21][r11][r21], d2 = contacts_2[c12][c22][r12][r22]
      for c11 in contacts_1:
        # map to other one
        if c11 not in mapped_residues: continue
        c1T = chain_mapping[c11]
        # second chain
        for c21 in contacts_1[c11]:
          # map to other one
          if c21 not in mapped_residues: continue
          c2T = chain_mapping[c21]
          # flip if needed
          flipped_chains = (c1T > c2T)
          if flipped_chains:
            c12, c22 = c2T, c1T
          else:
            c12, c22 = c1T, c2T
          # skip early if no contacts there
          if c12 not in contacts_2 or c22 not in contacts_2[c12]: continue
          # loop over res.num. in c11
          for r11 in contacts_1[c11][c21]:
            # map to other one and skip if no contacts there
            if r11 not in mapped_residues[c11]: continue
            r1T = mapped_residues[c11][r11]
            # loop over res.num. in c21
            for r21 in contacts_1[c11][c21][r11]:
              # map to other one and skip if no contacts there
              if r21 not in mapped_residues[c21]: continue
              r2T = mapped_residues[c21][r21]
              # flip if needed
              if flipped_chains:
                r12, r22 = r2T, r1T
              else:
                r12, r22 = r1T, r2T
              # skip early if no contacts there
              if r12 not in contacts_2[c12][c22]: continue
              if r22 not in contacts_2[c12][c22][r12]: continue
              # ok now we can finally do the scoring
              d1 = contacts_1[c11][c21][r11][r21]
              d2 = contacts_2[c12][c22][r12][r22]
              weight = _weight(min(d1, d2))
              weighted_scores += weight * (1 - abs(d1 - d2) / 12)
              weight_sum += weight
              # keep track of done ones
              done_1.add((c11, c21, r11, r21))
              done_2.add((c12, c22, r12, r22))
    
      LogVerbose("Shared contacts: %d" % len(done_1))
    
      # add the extra weights
      weights_extra_1 = _GetExtraWeights(contacts_1, done_1, mapped_residues)
      mapped_residues_2 = dict()
      for c1 in mapped_residues:
        c2 = chain_mapping[c1]
        mapped_residues_2[c2] = set()
        for r1 in mapped_residues[c1]:
          mapped_residues_2[c2].add(mapped_residues[c1][r1])
      weights_extra_2 = _GetExtraWeights(contacts_2, done_2, mapped_residues_2)
      weight_extra_mapped = weights_extra_1[0] + weights_extra_2[0]
      weight_extra_all    = weights_extra_1[1] + weights_extra_2[1]
      
      # get scores
      denom_best = weight_sum + weight_extra_mapped
      denom_all  = weight_sum + weight_extra_all
      if denom_best == 0:
        QS_best = 0
      else:
        QS_best = weighted_scores / denom_best
      if denom_all == 0:
        QS_global = 0
      else:
        QS_global = weighted_scores / denom_all
      return QS_best, QS_global
    
    def _weight(dist):
      """
      This weight expresses the probability of two residues to interact given the CB
      distance (from Xu et al. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573399/)
      """
      if dist <= 5.0:
        return 1
      x = (dist-5.0)/4.28;
      return np.exp(-2*x*x)
    
    
    def _GetQsSuperposition(alns):
      """
      :return: Superposition result based on shared CA atoms in *alns*
               (with views attached) (see :attr:`QSscorer.superposition`).
      :param alns: See :attr:`QSscorer.alignments`
      """
      # check input
      if not alns:
        raise QSscoreError('No successful alignments for superposition!')
      # prepare views
      view_1 = alns[0].GetSequence(0).attached_view.CreateEmptyView()
      view_2 = alns[0].GetSequence(1).attached_view.CreateEmptyView()
      # collect CA from alignments in proper order
      for aln in alns:
        for col in aln:
          res_1 = col.GetResidue(0)
          res_2 = col.GetResidue(1)
          if res_1.IsValid() and res_2.IsValid():
            ca_1 = res_1.FindAtom('CA')
            ca_2 = res_2.FindAtom('CA')
            if ca_1.IsValid() and ca_2.IsValid():
              view_1.AddAtom(ca_1)
              view_2.AddAtom(ca_2)
      # superpose them without chainging entities
      res = mol.alg.SuperposeSVD(view_1, view_2, apply_transform=False)
      return res
    
    # specify public interface
    __all__ = ('QSscoreError', 'QSscorer', 'QSscoreEntity', 'FilterContacts',
               'GetContacts', 'OligoLDDTScorer')