Skip to content
Snippets Groups Projects
Snakefile 36.3 KiB
Newer Older
"""General purpose RNA-Seq analysis pipeline developed by the Zavolan Lab"""
import pandas as pd
Dominik Burri's avatar
Dominik Burri committed
import shutil
BIOPZ-Bak Maciej's avatar
BIOPZ-Bak Maciej committed
import glob
from zipfile import ZipFile 
# Get sample table
samples_table = pd.read_csv(
    config['samples'],
    header=0,
    index_col=0,
    comment='#',
    engine='python',
    sep="\t",
)
# Global config
BIOPZ-Bak Maciej's avatar
BIOPZ-Bak Maciej committed
localrules: finish, rename_star_rpm_for_alfa, prepare_files_for_report, \
    prepare_MultiQC_config
# Create log directories
os.makedirs(
    os.path.join(
        os.getcwd(),
        config['log_dir'],
    ),
if cluster_config:
    os.makedirs(
        os.path.join(
            os.getcwd(),
            os.path.dirname(cluster_config['__default__']['out']),
        ),
# Include subworkflows
include: os.path.join("workflow", "rules", "paired_end.snakefile.smk")
include: os.path.join("workflow", "rules", "single_end.snakefile.smk")
BIOPZ-Bak Maciej's avatar
BIOPZ-Bak Maciej committed
        MultiQC_report = expand(
            os.path.join(
                config['output_dir'],
BIOPZ-Bak Maciej's avatar
BIOPZ-Bak Maciej committed
                "multiqc_summary"),
            output_dir=config["output_dir"])
    input:
        genome = lambda wildcards:
            samples_table['genome']
            [samples_table['organism'] == wildcards.organism]
            [0],
        gtf = lambda wildcards:
            samples_table['gtf']
            [samples_table['organism'] == wildcards.organism]
            [0]

    output:
        chromosome_info = os.path.join(
            config['star_indexes'],
            "{organism}",
            "{index_size}",
            "STAR_index",
        chromosomes_names = os.path.join(
            config['star_indexes'],
            "{organism}",
            "{index_size}",
            "STAR_index",
    params:
        output_dir = os.path.join(
            config['star_indexes'],
            "{organism}",
            "{index_size}",
        outFileNamePrefix = os.path.join(
            config['star_indexes'],
            "{organism}",
            "{index_size}",
    singularity:
Alex Kanitz's avatar
Alex Kanitz committed
        "docker://zavolab/star:2.7.3a-slim"
    threads: 12
            config['log_dir'],
            "{organism}_{index_size}_create_index_star.stderr.log"),
        stdout = os.path.join(
            config['log_dir'],
            "{organism}_{index_size}_create_index_star.stdout.log")

    shell:
        "(mkdir -p {params.output_dir}; \
        chmod -R 777 {params.output_dir}; \
        STAR \
        --runMode genomeGenerate \
        --sjdbOverhang {params.sjdbOverhang} \
        --genomeDir {params.output_dir} \
        --genomeFastaFiles {input.genome} \
        --runThreadN {threads} \
        --outFileNamePrefix {params.outFileNamePrefix} \
        --sjdbGTFfile {input.gtf}) \
        1> {log.stdout} 2> {log.stderr}"
rule extract_transcriptome:
    """ Create transcriptome from genome and gene annotations """
    input:
        genome = lambda wildcards:
            samples_table['genome'][
                samples_table['organism'] == wildcards.organism
            ][0],
        gtf = lambda wildcards:
            samples_table['gtf'][
                samples_table['organism'] == wildcards.organism
            ][0] 
    output:
        transcriptome = os.path.join(
                config['output_dir'],
                "transcriptome",
                "{organism}",
                "transcriptome.fa",
            )
    log:
        stderr = os.path.join(
            config['log_dir'],
            "{organism}_extract_transcriptome.log"),
        stdout = os.path.join(
            config['log_dir'],
            "{organism}_extract_transcriptome.log")
    singularity:
        "docker://zavolab/gffread:0.11.7"
    shell:
        "(gffread \
        -w {output.transcriptome} \
        -g {input.genome} {input.gtf}) \
        1> {log.stdout} 2> {log.stderr}"
        transcriptome = os.path.join(
                config['output_dir'],
                "transcriptome",
                "{organism}",
                "transcriptome.fa",
            )
    output:
        index = directory(
            os.path.join(
                config['salmon_indexes'],
                "{organism}",
                "{kmer}",
    singularity:
        "docker://zavolab/salmon:1.1.0-slim"
            config['log_dir'],
            "{organism}_{kmer}_create_index_salmon.stderr.log"),
        stdout = os.path.join(
            config['log_dir'],
            "{organism}_{kmer}_create_index_salmon.stdout.log")

    threads: 8
    shell:
        "(salmon index \
        --transcripts {input.transcriptome} \
        --index {output.index} \
        --kmerLen {params.kmerLen} \
        --threads {threads}) \
        1> {log.stdout} 2> {log.stderr}"
        transcriptome = os.path.join(
                config['output_dir'],
                "transcriptome",
                "{organism}",
                "transcriptome.fa",
            )
    output:
        index = os.path.join(
            config['kallisto_indexes'],
            "{organism}",
    params:
        output_dir = os.path.join(
            config['kallisto_indexes'],
    singularity:
Alex Kanitz's avatar
Alex Kanitz committed
        "docker://zavolab/kallisto:0.46.1-slim"
            config['log_dir'],
            "{organism}_create_index_kallisto.stderr.log"),
        stdout = os.path.join(
            config['log_dir'],
            "{organism}_create_index_kallisto.stdout.log")

    shell:
        "(mkdir -p {params.output_dir}; \
        chmod -R 777 {params.output_dir}; \
        kallisto index -i {output.index} {input.transcriptome}) \
        1> {log.stdout}  2> {log.stderr}"

rule extract_transcripts_as_bed12:
    input:
        gtf = lambda wildcards:
    output:
        bed12 = os.path.join(
            config['output_dir'],
    singularity:
Alex Kanitz's avatar
Alex Kanitz committed
        "docker://zavolab/gtf_transcript_type_to_bed12:0.1.0-slim"
    threads: 1
            config['log_dir'],
        --anno={input.gtf} \
        --type=protein_coding > {output.bed12}); \
        2> {log.stderr}"
rule index_genomic_alignment_samtools:
    '''
        Index genome bamfile using samtools
    '''
    input:
        bam = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "map_genome",
            "{sample}_Aligned.sortedByCoord.out.bam")

    output:
        bai = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "map_genome",
            "{sample}_Aligned.sortedByCoord.out.bam.bai")

    singularity:
        "docker://zavolab/samtools:1.10-slim"

    threads: 1

    log:
        stderr = os.path.join(
            config["log_dir"],
            "{seqmode}",
            "{sample}",
            "index_genomic_alignment_samtools.stderr.log"),
        stdout = os.path.join(
            config["log_dir"],
            "{seqmode}",
            "{sample}",
            "index_genomic_alignment_samtools.stdout.log")

    shell:
        "(samtools index {input.bam} {output.bai};) \
        1> {log.stdout} 2> {log.stderr}"


rule star_rpm:
    ''' Create stranded bedgraph coverage with STARs RPM normalisation '''
    input: 
        bam = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "map_genome",
            "{sample}_Aligned.sortedByCoord.out.bam"),
        bai = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "map_genome",
            "{sample}_Aligned.sortedByCoord.out.bam.bai")

    output:
        str1 = (os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "STAR_coverage",
            "{sample}_Signal.Unique.str1.out.bg"),
            os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "STAR_coverage",
            "{sample}_Signal.UniqueMultiple.str1.out.bg")),
        str2 = (os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "STAR_coverage",
            "{sample}_Signal.Unique.str2.out.bg"),
            os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "STAR_coverage",
            "{sample}_Signal.UniqueMultiple.str2.out.bg"))

    params:
        out_dir = lambda wildcards, output: os.path.dirname(output.str1[0]),
        prefix = lambda wildcards, output: os.path.join(os.path.dirname(output.str1[0]),
            str(wildcards.sample) + "_"),
        stranded = "Stranded"

    singularity:
        "docker://zavolab/star:2.7.3a-slim"

    log: 
        stderr = os.path.join(
            config["log_dir"],
            "{seqmode}",
            "{sample}",
            "star_rpm_single_end.stderr.log"),
        stdout = os.path.join(
            config["log_dir"],
            "{seqmode}",
            "{sample}",
            "star_rpm_single_end.stdout.log")

    threads: 4

    shell:
        """
        (mkdir -p {params.out_dir}; \
        chmod -R 777 {params.out_dir}; \
        STAR \
        --runMode inputAlignmentsFromBAM \
        --runThreadN {threads} \
        --inputBAMfile {input.bam} \
        --outWigType "bedGraph" \
        --outWigStrand {params.stranded} \
        --outWigNorm "RPM" \
        --outFileNamePrefix {params.prefix}) \
        1> {log.stdout} 2> {log.stderr}
        """


Dominik Burri's avatar
Dominik Burri committed
rule rename_star_rpm_for_alfa:
    input:
        str1 = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "STAR_coverage",
            "{sample}_Signal.UniqueMultiple.str1.out.bg"),
        str2 = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "STAR_coverage",
            "{sample}_Signal.UniqueMultiple.str2.out.bg")
    
    output:
        plus = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "ALFA",
            "{sample}_Signal.UniqueMultiple.out.plus.bg"),
        minus = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "ALFA",
            "{sample}_Signal.UniqueMultiple.out.minus.bg")
    
    params:
        orientation = lambda wildcards: samples_table.loc[wildcards.sample, "kallisto_directionality"]
    
    run:
        if params['orientation'] == "--fr":
            shutil.copy2(input['str1'], output['plus'])
            shutil.copy2(input['str2'], output['minus'])
        elif params['orientation'] == "--rf":
            shutil.copy2(input['str1'], output['minus'])
            shutil.copy2(input['str2'], output['plus'])


rule calculate_TIN_scores:
        bam = os.path.join(
            config['output_dir'],
            "{seqmode}",
            "{sample}",
            "map_genome",
            "{sample}_Aligned.sortedByCoord.out.bam"),
        bai = os.path.join(
            config['output_dir'],
            "{seqmode}",
            "{sample}",
            "map_genome",
            "{sample}_Aligned.sortedByCoord.out.bam.bai"),
        transcripts_bed12 = os.path.join(
            config['output_dir'],
    output:
        TIN_score = os.path.join(
            config['output_dir'],
            "{seqmode}",
            "{sample}",
            "TIN",
            config['log_dir'],
            "{seqmode}",
            "{sample}",
    threads: 8
    singularity:
        "docker://zavolab/tin_score_calculation:0.2.0-slim"
        -r {input.transcripts_bed12} \
        -c 0 \
        --names {params.sample} \
        -n 100 > {output.TIN_score};) 2> {log.stderr}"
rule merge_TIN_scores:
    """
        Merge TIN scores tables
    """
    input:
        TIN_score = expand(
            os.path.join(
                config['output_dir'],
                "{seqmode}",
                "{sample}",
                "TIN",
                "TIN_score.tsv"),
            zip,
            sample=[i for i in list(samples_table.index.values)],
            seqmode=[samples_table.loc[i, 'seqmode']
                     for i in list(samples_table.index.values)])

    output:
        TIN_scores_merged = os.path.join(
            config['output_dir'],
            "TIN_scores_merged.tsv")

    params:
        TIN_score_merged_paths = ",".join(expand(
            os.path.join(
                config['output_dir'],
                "{seqmode}",
                "{sample}",
                "TIN",
                "TIN_score.tsv"),
            zip,
            sample=[i for i in list(samples_table.index.values)],
            seqmode=[samples_table.loc[i, 'seqmode']
                     for i in list(samples_table.index.values)]))

    log:
        stderr = os.path.join(
            config['log_dir'],
            "merge_TIN_scores.stderr.log"),
        stdout = os.path.join(
            config["log_dir"],
            "merge_TIN_scores.stdout.log")

    threads: 1

    singularity:
        "docker://zavolab/tin_score_calculation:0.2.0-slim"

    shell:
        "(tin_score_merge.py \
        --input-files {params.TIN_score_merged_paths} \
        --output-file {output.TIN_scores_merged}) \
        1> {log.stdout} 2> {log.stderr}"


rule plot_TIN_scores:
    """
        Generate TIN scores boxplots
    """
    input:
        TIN_scores_merged = os.path.join(
            config['output_dir'],
            "TIN_scores_merged.tsv"),

    output:
        TIN_boxplot_PNG = os.path.join(
            config['output_dir'],
            "TIN_scores_boxplot.png"),
        TIN_boxplot_PDF = os.path.join(
            config['output_dir'],
            "TIN_scores_boxplot.pdf")

    params:
        TIN_boxplot_prefix = os.path.join(
            config['output_dir'],
            "TIN_scores_boxplot")

    log:
        stderr = os.path.join(
            config['log_dir'],
            "plot_TIN_scores.stderr.log"),
        stdout = os.path.join(
            config["log_dir"],
            "plot_TIN_scores.stdout.log")

    threads: 1

    singularity:
        "docker://zavolab/tin_score_calculation:0.2.0-slim"

    shell:
        "(tin_score_plot.py \
        --input-file {input.TIN_scores_merged} \
        --output-file-prefix {params.TIN_boxplot_prefix}) \
        1> {log.stdout} 2> {log.stderr}"


rule salmon_quantmerge_genes:
    '''
        Merge gene quantifications into a single file
    '''
        salmon_in = expand(
            os.path.join(
                config["output_dir"],
                "{seqmode}",
                "{sample}",
                "salmon_quant",
                "quant.genes.sf"),
            sample=list(samples_table.index.values),
            seqmode=list(samples_table["seqmode"]))

            config["output_dir"],
            "summary_salmon",
            "quantmerge",
            "genes_{salmon_merge_on}.tsv")

    params:
        salmon_dir = expand(
            os.path.join(
                config["output_dir"],
                "{seqmode}",
                "{sample}",
                "salmon_quant"),
            sample=list(samples_table.index.values),
            seqmode=list(samples_table["seqmode"])),
        sample_name_list = expand(
            "{sample}",
            sample=list(samples_table.index.values)),
        salmon_merge_on = "{salmon_merge_on}"
        stderr = os.path.join(
            config["log_dir"],
            "salmon_quantmerge_genes_{salmon_merge_on}.stderr.log"),
        stdout = os.path.join(
            config["log_dir"],
            "salmon_quantmerge_genes_{salmon_merge_on}.stdout.log")

    threads: 1

    singularity:
        "docker://zavolab/salmon:1.1.0-slim"
    shell:
        "(salmon quantmerge \
        --quants {params.salmon_dir} \
        --genes \
        --names {params.sample_name_list} \
        --column {params.salmon_merge_on} \
        --output {output.salmon_out};) \
        1> {log.stdout} 2> {log.stderr}"

rule salmon_quantmerge_transcripts:
    '''
        Merge gene quantifications into a single file
    '''
        salmon_in = expand(
            os.path.join(
                config["output_dir"],
                "{seqmode}",
                "{sample}",
                "salmon_quant",
                "quant.sf"),
            sample=list(samples_table.index.values),
            seqmode=list(samples_table["seqmode"])),

            config["output_dir"],
            "summary_salmon",
            "quantmerge",
            "transcripts_{salmon_merge_on}.tsv")

    params:
        salmon_dir = expand(
            os.path.join(
                config["output_dir"],
                "{seqmode}",
                "{sample}",
                "salmon_quant"),
            sample=list(samples_table.index.values),
            seqmode=list(samples_table["seqmode"])),
        sample_name_list = expand(
            "{sample}",
            sample=list(samples_table.index.values)),
        salmon_merge_on = "{salmon_merge_on}"
        stderr = os.path.join(
            config["log_dir"],
            "salmon_quantmerge_transcripts_{salmon_merge_on}.stderr.log"),
        stdout = os.path.join(
            config["log_dir"],
            "salmon_quantmerge_transcripts_{salmon_merge_on}.stdout.log")

    threads: 1

        "docker://zavolab/salmon:1.1.0-slim"
    shell:
        "(salmon quantmerge \
        --quants {params.salmon_dir} \
        --names {params.sample_name_list} \
        --column {params.salmon_merge_on} \
Dominik Burri's avatar
Dominik Burri committed
        1> {log.stdout} 2> {log.stderr}"


#################################################################################
### ALFA: Annotation Landscape For Aligned reads
#################################################################################

directionality = {"--fr": "fr-firststrand", "--rf": "fr-secondstrand"}


rule generate_alfa_index:
    ''' Generate ALFA index files from sorted GTF file '''
    input:
        gtf = lambda wildcards: samples_table["gtf"][samples_table["organism"]==wildcards.organism][0],
        chr_len = os.path.join(
            config["star_indexes"],
            "{organism}",
            "{index_size}",
            "STAR_index",
            "chrNameLength.txt"),

    output:
        index_stranded = os.path.join(config["alfa_indexes"], 
            "{organism}", 
            "{index_size}", 
            "ALFA", 
            "sorted_genes.stranded.ALFA_index"),
        index_unstranded = os.path.join(config["alfa_indexes"], 
            "{organism}", 
            "{index_size}", 
            "ALFA", 
            "sorted_genes.unstranded.ALFA_index")

    params:
        genome_index = "sorted_genes",
        out_dir = lambda wildcards, output: os.path.dirname(output.index_stranded)

    threads: 4

    singularity: 
        "docker://zavolab/alfa:1.1.1"

    log: 
        os.path.join(config["log_dir"], "{organism}_{index_size}_generate_alfa_index.log")

    shell:
        """
        alfa -a {input.gtf} \
            -g {params.genome_index} \
            --chr_len {input.chr_len} \
            -p {threads} \
            -o {params.out_dir} &> {log}
        """


rule alfa_qc:
    ''' Run ALFA from stranded bedgraph files '''
    input:
        plus = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "ALFA",
            "{sample}_Signal.UniqueMultiple.out.plus.bg"),
        minus = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "ALFA",
            "{sample}_Signal.UniqueMultiple.out.minus.bg"),
        gtf = lambda wildcards: os.path.join(config["alfa_indexes"], 
            samples_table.loc[wildcards.sample, "organism"], 
            str(samples_table.loc[wildcards.sample, "index_size"]), 
            "ALFA", 
            "sorted_genes.stranded.ALFA_index")

    output:
        biotypes = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "ALFA",
            "ALFA_plots.Biotypes.pdf"),
        categories = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "ALFA",
            "ALFA_plots.Categories.pdf"),
        table = os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "ALFA",
            "{sample}.ALFA_feature_counts.tsv")

    params:
        out_dir = lambda wildcards, output: os.path.dirname(output.biotypes),
        alfa_orientation = lambda wildcards: directionality[samples_table.loc[wildcards.sample, "kallisto_directionality"]],
        in_file_plus = lambda wildcards, input: os.path.basename(input.plus),
        in_file_minus = lambda wildcards, input: os.path.basename(input.minus),
        genome_index = lambda wildcards, input: os.path.abspath(os.path.join(os.path.dirname(input.gtf), "sorted_genes")),
        name = "{sample}"

    singularity:
        "docker://zavolab/alfa:1.1.1"

    log: 
        os.path.abspath(os.path.join(
            config["log_dir"], 
            "{seqmode}", 
            "{sample}", 
            "alfa_qc.log"))

    shell:
        """ 
        cd {params.out_dir}; \
        (alfa -g {params.genome_index} \
            --bedgraph {params.in_file_plus} {params.in_file_minus} {params.name} \
            -s {params.alfa_orientation}) &> {log}
        """


rule alfa_qc_all_samples:
    ''' Run ALFA from stranded bedgraph files on all samples '''
    input:
        tables = [os.path.join(
            config["output_dir"],
            samples_table.loc[sample1, "seqmode"],
            str(sample1),
            "ALFA",
            sample1 + ".ALFA_feature_counts.tsv")
            for sample1 in list(samples_table.index.values)]

    output:
        biotypes = os.path.join(
            config["output_dir"],
            "ALFA",
            "ALFA_plots.Biotypes.pdf"),
        categories = os.path.join(
            config["output_dir"],
            "ALFA",
            "ALFA_plots.Categories.pdf")

    params:
        out_dir = lambda wildcards, output: os.path.dirname(output.biotypes)

    log: 
        os.path.abspath(
            os.path.join(config["log_dir"], 
            "alfa_qc_all_samples.log"))

    singularity:
        "docker://zavolab/alfa:1.1.1"

    shell:
        """
        (alfa -c {input.tables} -o {params.out_dir}) &> {log}
        """
BIOPZ-Bak Maciej's avatar
BIOPZ-Bak Maciej committed
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235


rule prepare_files_for_report:
    '''
        Re-structure the results and add comments for MultiQC parsing
    '''
    input:
        outdir1 = expand(
            os.path.join(
                config['output_dir'],
                "{seqmode}",
                "{sample}",
                "mate1_fastqc"),
            zip,
            sample=[i for i in list(samples_table.index.values)],
            seqmode=[samples_table.loc[i, 'seqmode']
                     for i in list(samples_table.index.values)]),
        pseudoalignment = expand(
            os.path.join(
                config['output_dir'],
                "{seqmode}",
                "{sample}",
                "quant_kallisto",
                "{sample}.kallisto.pseudo.sam"),
            zip,
            sample=[i for i in list(samples_table.index.values)],
            seqmode=[samples_table.loc[i, 'seqmode']
                     for i in list(samples_table.index.values)]),
        TIN_boxplot_PNG = os.path.join(
            config['output_dir'],
            "TIN_scores_boxplot.png"),
        TIN_boxplot_PDF = os.path.join(
            config['output_dir'],
            "TIN_scores_boxplot.pdf"),
        salmon_merge_genes = expand(
            os.path.join(
                config["output_dir"],
                "summary_salmon",
                "quantmerge",
                "genes_{salmon_merge_on}.tsv"),
            salmon_merge_on=["tpm", "numreads"]),
        salmon_merge_transcripts = expand(
            os.path.join(
                config["output_dir"],
                "summary_salmon",
                "quantmerge",
                "transcripts_{salmon_merge_on}.tsv"),
            salmon_merge_on=["tpm", "numreads"]),
        star_rpm = expand(
            os.path.join(
                config["output_dir"],
                "{seqmode}",
                "{sample}",
                "STAR_coverage",
                "{sample}_Signal.UniqueMultiple.str1.out.bg"),
                zip,
                sample=[i for i in list(samples_table.index.values)],
                seqmode=[samples_table.loc[i, 'seqmode']
                        for i in list(samples_table.index.values)]),
        alfa_reports = expand(os.path.join(
            config["output_dir"],
            "{seqmode}",
            "{sample}",
            "ALFA",
            "ALFA_plots.Biotypes.pdf"),
            zip,
            sample= [i for i in list(samples_table.index.values)],
            seqmode= [
                samples_table.loc[i,"seqmode"] 
                for i in list(samples_table.index.values)]),
        alfa_all_samples = os.path.join(
            config["output_dir"],
            "ALFA",
            "ALFA_plots.Categories.pdf")

    output:
        samples_dir = directory(os.path.join(
            "{output_dir}",
            "samples"))
    params:
        results_dir = config["output_dir"],
        log_dir = config["log_dir"],
        log_samples_dir = os.path.join(
            config["log_dir"],
            "samples")
    log:
        LOG_local_log = \
            os.path.join("{output_dir}", "local_log", \
                "prepare_files_for_report.log")
    run:

        # remove "single/paired end" from the results directories
        os.mkdir(output.samples_dir)
        # move paired end results
        paired_end_dir = glob.glob(
            os.path.join(
                params.results_dir,
                "paired_end",
                "*"))
        for s in paired_end_dir:
            sample_name = s.split("/")[-1]
            shutil.copytree(
                s, \
                os.path.join(
                    params.results_dir,
                    "samples",
                    sample_name))
        shutil.rmtree(
            os.path.join(
                params.results_dir,
                "paired_end"),
            ignore_errors=False,
            onerror=None)
        # move single end results
        single_end_dir = glob.glob(
            os.path.join(
                params.results_dir,
                "single_end",
                "*"))
        for s in single_end_dir:
            sample_name = s.split("/")[-1]
            shutil.copytree(
                s, \
                os.path.join(
                    params.results_dir,
                    "samples",
                    sample_name))
        shutil.rmtree(
            os.path.join(
                params.results_dir,
                "single_end"),
            ignore_errors=False,
            onerror=None)

        # remove "single/paired end" from the logs directories
        os.mkdir(params.log_samples_dir)
        # move paired end results
        paired_end_dir = glob.glob(
            os.path.join(
                params.log_dir,
                "paired_end",
                "*"))
        for s in paired_end_dir:
            sample_name = s.split("/")[-1]
            shutil.copytree(
                s, \
                os.path.join(
                    params.log_dir,
                    "samples",
                    sample_name))
        shutil.rmtree(
            os.path.join(
                params.log_dir,
                "paired_end"),
            ignore_errors=False,
            onerror=None)
        # move single end results
        single_end_dir = glob.glob(
            os.path.join(
                params.log_dir,
                "single_end",
                "*"))
        for s in single_end_dir:
            sample_name = s.split("/")[-1]
            shutil.copytree(
                s, \
                os.path.join(
                    params.log_dir,
                    "samples",
                    sample_name))
        shutil.rmtree(
            os.path.join(
                params.log_dir,
                "single_end"),
            ignore_errors=False,
            onerror=None)

        # encapsulate salmon quantification results
        all_samples_dirs = glob.glob(
            os.path.join(
                params.results_dir,
                "samples",
                "*"))
        for s in all_samples_dirs:
            sample_name = s.split("/")[-1]
            shutil.move(
                os.path.join(
                    s,
                    "salmon_quant"),
                os.path.join(
                    s,
                    sample_name)
                )
            os.mkdir(os.path.join(
                s,
                "salmon_quant"))
            shutil.move(
                os.path.join(
                    s,
                    sample_name),
                os.path.join(
                    s,
                    "salmon_quant",
                    sample_name)
                )

        # adjust FastQC results 'Filename' field:
        fastq_zip_list = glob.glob(
            os.path.join(
                params.results_dir,
                "samples",
                "*",
                "*_fastqc",
                "*_fastqc.zip"))
        for zipfile in fastq_zip_list:
            sample_name = zipfile.split("/")[-3]
            zipfile_path_chunks = zipfile.split("/")
            new_path = os.path.join(*(zipfile_path_chunks[:-1]))
            with ZipFile(zipfile, 'r') as zip_f:
                zip_f.extractall(new_path)
            fastqc_data_f = os.path.join(
                zipfile[:-4],
                "fastqc_data.txt")
            with open(fastqc_data_f) as f:
                log_lines = f.read().splitlines()
            log_lines[3] = "Filename\t" + sample_name+"|"+log_lines[3].split("\t")[1]
            with open(fastqc_data_f, "w") as f:
                for i in log_lines: f.write(i+"\n")
            os.remove(zipfile)

        # adjust Kallisto quantification logs
        kallisto_logs = glob.glob(
            os.path.join(
                params.log_dir,
                "samples",
                "*",
                "genome_quantification_kallisto.stderr.log"))
        for kallisto_log in kallisto_logs:
            with open(kallisto_log) as f:
                log_lines = f.read().splitlines()
                temp = log_lines[8].split(".")
            log_lines[8] = temp[0] + "." + temp[2] + "." + temp[3]
            with open(kallisto_log+".MODIFIED", "w") as f:
                for i in log_lines: f.write(i+"\n")

        # add #-comment to all cutadapt logs:
        cutadapt_logs = glob.glob(
            os.path.join(
                params.log_dir,
                "samples",
                "*",
                "remove_*_cutadapt.stdout.log"))
        for cutadapt_log in cutadapt_logs:
            sample_name = cutadapt_log.split("/")[-2]
            with open(cutadapt_log) as f:
                log_lines = f.read().splitlines()
            log_lines[1] = log_lines[1] + " # " + sample_name
            with open(cutadapt_log, "w") as f:
                for i in log_lines: f.write(i+"\n")

        # adjust TIN boxplots filenames for MutliQC recognition
        os.rename(
            input.TIN_boxplot_PNG,
            os.path.join(
                params.results_dir,
                "TIN scores_mqc.png"))
        os.rename(
            input.TIN_boxplot_PDF,
            os.path.join(
                params.results_dir,
                "TIN scores_mqc.pdf"))


rule prepare_MultiQC_config:
    '''
        Prepare config for the MultiQC
    '''
    input:
        multiqc_input_dir = os.path.join(
            "{output_dir}",
            "samples")
    output:
        multiqc_config = os.path.join(
            "{output_dir}",
            "MultiQC_config.yaml")
    params:
        logo_path = os.path.join(
            "..",
            "..",
            "images",
            "logo.128px.png"),
        results_dir = config["output_dir"]
    log:
        LOG_local_log = \
            os.path.join("{output_dir}", "local_log", \
                "prepare_MultiQC_config.log")
    run:
        with open(output.multiqc_config, "w") as YAML:
            YAML.write("---\n\n")
            YAML.write("title: \"Rhea\"\n")
            YAML.write("subtitle: \"RNA-Seq processing pipeline developed by the members of Zavolan Lab\"\n")
            YAML.write("intro_text: \"Short analysis title from config[analysis_title]\"\n")
            YAML.write("custom_logo: \""+params.logo_path+"\"\n")
            YAML.write("custom_logo_url: \"https://www.biozentrum.unibas.ch/research/researchgroups/overview/unit/zavolan/research-group-mihaela-zavolan/\"\n")
            YAML.write("custom_logo_title: \"ZavoLab\"\n\n")
            YAML.write("report_header_info:\n")
            YAML.write("  - Project Type: \"Snakemake workflow\"\n")
            YAML.write("  - Analysis Type: \"RNA-seq\"\n")
            YAML.write("  - Analysis Author: \"config[author_name]\"\n")
            YAML.write("  - Contact E-mail: \"config[author_email]\"\n\n")
            YAML.write("top_modules:\n\n")
            YAML.write("  - fastqc:\n")
            YAML.write("      path_filters:\n")
            YAML.write("      - \"*/mate1_fastqc/*\"\n")
            YAML.write("      - \"*/mate2_fastqc/*\"\n")            
            YAML.write("\n")
            YAML.write("  - cutadapt:\n")
            YAML.write("      name: \"Cutadapt: adapter removal\"\n")
            YAML.write("      path_filters:\n")
            YAML.write("      - \"*/remove_adapters_cutadapt.stdout.log\"\n")
            YAML.write("\n")
            YAML.write("  - cutadapt:\n")
            YAML.write("      name: \"Cutadapt: polyA tails removal\"\n")
            YAML.write("      path_filters:\n")
            YAML.write("      - \"*/remove_polya_cutadapt.stdout.log\"\n")
            YAML.write("\n")
            YAML.write("  - star:\n")
            YAML.write("      path_filters:\n")
            YAML.write("      - \"*/map_genome/*\"\n")
            YAML.write("\n")
            YAML.write("  - TIN_scores:\n")
            YAML.write("      path_filters:\n")
            YAML.write("      - \"*/TIN scores_mqc.png\"\n")
            YAML.write("\n")  
            YAML.write("  - salmon:\n")
            YAML.write("      path_filters:\n")
            YAML.write("      - \"*/salmon_quant/*\"\n")
            YAML.write("\n")
            YAML.write("  - kallisto:\n")
            YAML.write("      path_filters:\n")
            YAML.write("      - \"*/genome_quantification_kallisto.stderr.log.MODIFIED\"\n")
            YAML.write("\n")
            YAML.write("...")


rule MULTIQC_report:
    '''
        Create report with MultiQC
    '''
    input:
        multiqc_config = os.path.join(
            config["output_dir"],
            "MultiQC_config.yaml")
    output:
        MultiQC_report = \
            directory(os.path.join("{output_dir}", "multiqc_summary"))
    params:
        results_dir = config["output_dir"],
        log_dir = config["log_dir"]
    log:
        LOG_local_log = \
            os.path.join("{output_dir}", "local_log", \
                "MULTIQC_report.log")
    singularity:
        "docker://ewels/multiqc:1.7"
    shell:
        """
        multiqc \
        --outdir {output.MultiQC_report} \
        --config {input.multiqc_config} \
        {params.results_dir} \
        {params.log_dir} \
        &> {log.LOG_local_log};
        """