-
Hugo Gillet authoredHugo Gillet authored
representative.py 2.95 KiB
import pandas as pd
import os
'''
This part of the code take as input a gtf modified file
and return a dictionary of transcripts with best
support level for each gene of the input
'''
def import_gtfSelection_to_df(gtf_modified_file: str) -> pd.DataFrame:
"""Import intermediate file from gtf and create a df
Args:
gtf_modified_file (str) : path to the intermediate file
Returns:
Pandas dataframe having Gene, transcript
and support level as columns
Raises:
TypeError : Only str path is allowed
"""
pass
if not type(gtf_modified_file) is str:
raise TypeError("Only str path is allowed")
df_input = pd.read_csv(gtf_modified_file, sep = '\t', lineterminator = '\n',
names = ["Gene_mixed", "Transcript", "Support_level", "Na1", "Na2"] )
df_input["Support_level"] = df_input["Support_level"].replace(" ", "")
df_input["Gene"] = df_input["Gene_mixed"].str.extract('([A-Z]\w{0,})', expand=True)
df_input["Transcript_number"] = df_input["Gene_mixed"].str.extract('(^\d)', expand=True)
df_clean = df_input.loc[:, ["Gene", "Transcript","Support_level"]]
df_clean["Gene"] = df_clean["Gene"].fillna(method = 'ffill')
df_clean = df_clean.dropna(axis = 0)
return df_clean
def representative_transcripts_inDict(df_gtfSelection: pd.DataFrame) -> pd.DataFrame:
"""Return a dict containing for each gene transcripts
with highest confidence level
Args:
df_gtfSelection (str): Pandas dataframe having Gene,
transcript and support level as columns
Returns:
Dict {'Gene':['transcriptA', 'transcriptB'], ...}
Raises:
TypeError : Only pandas DataFrame is allowed
"""
pass
if not type(df_gtfSelection) is pd.DataFrame:
raise TypeError("Only pandas DataFrame is allowed")
df_multIndex = df_gtfSelection.set_index(["Gene", "Transcript"])
#highest support level = 1 , worst = 5, NA = 100
df_min = df_multIndex[df_multIndex["Support_level"] == df_multIndex["Support_level"].min()]
df_final = df_min.reset_index(level = "Transcript")
df_final = df_final.drop(columns = ["Support_level"])
dict_representative_transcripts = df_final.groupby("Gene")["Transcript"].apply(list).to_dict()
return dict_representative_transcripts
def find_repr_by_SupportLevel(intermediate_file: str) -> dict[str,str]:
"""Combine functions import_gtfSelection_to_df()
and representative_transcripts_inDict()
Args:
intermediate_file : path to the intermediate file
Returns:
Dict {'Gene':['transcriptA', 'transcriptB'], ...}
Raises:
None
"""
pass
df_gtf = import_gtfSelection_to_df(intermediate_file)
dict_reprTrans = representative_transcripts_inDict(df_gtf)
return dict_reprTrans
if __name__ == "__main__":
find_repr_by_SupportLevel()