Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Transcript sampler
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
zavolan_group
tools
Transcript sampler
Commits
24484bd6
Commit
24484bd6
authored
2 years ago
by
Hugo Gillet
Browse files
Options
Downloads
Patches
Plain Diff
Add new file
parent
9aad3552
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
test/Test_representative_and_match/test_match.py
+203
-0
203 additions, 0 deletions
test/Test_representative_and_match/test_match.py
with
203 additions
and
0 deletions
test/Test_representative_and_match/test_match.py
0 → 100644
+
203
−
0
View file @
24484bd6
import
pandas
as
pd
import
json
import
re
import
match_reprtranscript_expressionlevel
as
match
import
os
import
pytest
import
test_Functions
as
tFun
import
numpy
as
np
import
representative
as
repr
from
pandas.testing
import
assert_frame_equal
def
test_dict_reprTrans_to_df
():
"""
This function test if a dict of {gene: representativeTranscript}
is converted in a dataframe in the right format
"""
dict_repr_test
=
{
"
ENSMUSG00000079415
"
:
"
ENSMUST00000112933
"
,
"
ENSMUSG00000024691
"
:
"
ENSMUST00000025595
"
,
"
ENSMUSG00000063683
"
:
"
ENSMUST00000119960
"
}
dict_mixed
=
{
"
a
"
:
2
,
"
b
"
:
3
}
str_random
=
"
jflkajflkaelfha
"
dict_int
=
{
12
:
34
,
13
:
66
}
df
=
match
.
dict_reprTrans_to_df
(
dict_repr_test
)
datatype
=
{
'
Gene
'
:
np
.
dtype
(
'
O
'
),
'
reprTrans
'
:
np
.
dtype
(
'
O
'
)}
with
pytest
.
raises
(
TypeError
,
match
=
r
"
Only dict are allowed
"
):
match
.
dict_reprTrans_to_df
(
str_random
)
with
pytest
.
raises
(
TypeError
,
match
=
r
"
Key should be strings
"
):
match
.
dict_reprTrans_to_df
(
dict_int
)
with
pytest
.
raises
(
TypeError
,
match
=
r
"
Values should be strings
"
):
match
.
dict_reprTrans_to_df
(
dict_mixed
)
assert
tFun
.
column_number
(
df
)
==
2
,
"
number of columns is not equal to 2
"
assert
tFun
.
column_dType
(
df
)
==
datatype
,
"
at least one column has the wrong datatype
"
assert
tFun
.
duplicated_rows
(
df
).
empty
,
"
at least one row are duplicated
"
assert
tFun
.
NA_value
(
df
)
==
0
,
"
at least one row contain NA values
"
def
test_txt_to_dict
():
path
=
tFun
.
find_path
(
"
test_dict_repr_trans.txt
"
)
dico
=
match
.
txt_to_dict
(
path
)
dict_test
=
{
'
ENSMUSG00000079415
'
:
'
ENSMUST00000112933
'
,
"
ENSMUSG00000024691
"
:
"
ENSMUST00000025595
"
,
"
ENSMUSG00000063683
"
:
"
ENSMUST00000119960
"
}
assert
dico
==
dict_test
def
test_transcripts_by_gene_inDf
():
"""
This function test if a dataframe generated from
the intermediate file is converted in another
dataframe without the support level column.
"""
path
=
tFun
.
find_path_intermediateFile
()
df
=
repr
.
import_gtfSelection_to_df
(
path
)
df_gene
=
match
.
transcripts_by_gene_inDf
(
df
)
datatype
=
{
'
Gene
'
:
np
.
dtype
(
'
O
'
),
'
Transcript
'
:
np
.
dtype
(
'
O
'
)}
assert
tFun
.
column_number
(
df_gene
)
==
2
,
"
number of columns is not equal to 2
"
assert
tFun
.
column_dType
(
df_gene
)
==
datatype
,
"
at least one column has the wrong datatype
"
assert
tFun
.
duplicated_rows
(
df_gene
).
empty
,
"
at least one row are duplicated
"
assert
tFun
.
NA_value
(
df_gene
)
==
0
,
"
at least one row contain NA values
"
def
test_tsv_or_csv_to_df
():
"""
This function test if the function tsv_or_csv_to_df() cans take
csv and tsv file as input and return a pandas dataframe in the
right format
"""
path_tsv
=
tFun
.
find_path
(
r
"
test_gene_exprL
"
)
df_tsv
=
match
.
tsv_or_csv_to_df
(
path_tsv
)
path_csv
=
tFun
.
find_path
(
r
"
test_gene_exprL_csv.csv
"
)
df_csv
=
match
.
tsv_or_csv_to_df
(
path_csv
)
datatype
=
{
'
Transcript
'
:
np
.
dtype
(
'
O
'
),
'
Expression_level
'
:
np
.
dtype
(
'
float64
'
)}
assert
tFun
.
column_number
(
df_tsv
)
==
2
,
"
number of columns is not equal to 2
"
assert
tFun
.
column_dType
(
df_tsv
)
==
datatype
,
"
at least one column has the wrong datatype
"
assert
tFun
.
duplicated_rows
(
df_tsv
).
empty
,
"
at least one row are duplicated
"
assert
tFun
.
NA_value
(
df_tsv
)
==
0
,
"
at least one row contain NA values
"
assert_frame_equal
(
df_tsv
,
df_csv
),
"
csv and tsv import doesn
'
t match
"
def
test_exprLevel_byGene
():
"""
This function test if the function exprLevel_byGene can find the gene of
each transcipt given by the expression level csv/tsv file and sum their
expression level
"""
path_tsv
=
tFun
.
find_path
(
r
"
test_gene_exprL
"
)
df_tsv_exprL
=
match
.
tsv_or_csv_to_df
(
path_tsv
)
path_intermediate
=
tFun
.
find_path_intermediateFile
()
df_intermediate
=
repr
.
import_gtfSelection_to_df
(
path_intermediate
)
df_gene_transcript
=
match
.
transcripts_by_gene_inDf
(
df_intermediate
)
df_exprLevel
=
match
.
exprLevel_byGene
(
df_tsv_exprL
,
df_gene_transcript
)
datatype
=
{
'
Expression_level
'
:
np
.
dtype
(
'
float64
'
)}
assert
tFun
.
column_number
(
df_exprLevel
)
==
1
,
"
number of columns is not equal to 1
"
assert
tFun
.
column_dType
(
df_exprLevel
)
==
datatype
,
"
at least one column has the wrong datatype
"
assert
tFun
.
duplicated_rows
(
df_exprLevel
).
empty
,
"
at least one row are duplicated
"
assert
tFun
.
NA_value
(
df_exprLevel
)
==
0
,
"
at least one row contain NA values
"
assert
tFun
.
duplicated_index
(
df_exprLevel
).
empty
,
"
at least one index element is duplicated
"
def
test_match_byGene
():
"""
This function test if the function
"
match_byGene()
"
can
create a pandas dataframe matching representative transcript
and their expression level based on their gene in the
correct pandas dataframe format.
"""
dict_repr_test
=
{
'
ENSMUSG00000079415
'
:
'
ENSMUST00000112933
'
,
"
ENSMUSG00000024691
"
:
"
ENSMUST00000025595
"
,
"
ENSMUSG00000063683
"
:
"
ENSMUST00000119960
"
}
df_dict_reprTrans
=
match
.
dict_reprTrans_to_df
(
dict_repr_test
)
path_tsv
=
tFun
.
find_path
(
r
"
test_gene_exprL
"
)
df_tsv_exprL
=
match
.
tsv_or_csv_to_df
(
path_tsv
)
path_intermediate
=
tFun
.
find_path_intermediateFile
()
df_intermediate
=
repr
.
import_gtfSelection_to_df
(
path_intermediate
)
df_gene_transcript
=
match
.
transcripts_by_gene_inDf
(
df_intermediate
)
df_exprLevel
=
match
.
exprLevel_byGene
(
df_tsv_exprL
,
df_gene_transcript
)
df_match
=
match
.
match_byGene
(
df_dict_reprTrans
,
df_exprLevel
)
datatype
=
{
'
reprTrans
'
:
np
.
dtype
(
'
O
'
),
'
Expression_level
'
:
np
.
dtype
(
'
float64
'
)}
assert
tFun
.
column_number
(
df_match
)
==
2
,
"
number of columns is not equal to 2
"
assert
tFun
.
column_dType
(
df_match
)
==
datatype
,
"
at least one column has the wrong datatype
"
assert
tFun
.
duplicated_rows
(
df_match
).
empty
,
"
at least one row are duplicated
"
assert
tFun
.
NA_value
(
df_match
)
==
0
,
"
at least one row contain NA values
"
assert
tFun
.
duplicated_index
(
df_match
).
empty
,
"
at least one index element is duplicated
"
def
test_output_tsv
():
"""
This function test if a tsv file is generated from a pandas
dataframe in the right format.
"""
dict_repr_test
=
{
'
ENSMUSG00000079415
'
:
'
ENSMUST00000112933
'
,
"
ENSMUSG00000024691
"
:
"
ENSMUST00000025595
"
,
"
ENSMUSG00000063683
"
:
"
ENSMUST00000119960
"
}
df_dict_reprTrans
=
match
.
dict_reprTrans_to_df
(
dict_repr_test
)
path_tsv
=
tFun
.
find_path
(
r
"
test_gene_exprL
"
)
df_tsv_exprL
=
match
.
tsv_or_csv_to_df
(
path_tsv
)
path_intermediate
=
tFun
.
find_path_intermediateFile
()
df_intermediate
=
repr
.
import_gtfSelection_to_df
(
path_intermediate
)
df_gene_transcript
=
match
.
transcripts_by_gene_inDf
(
df_intermediate
)
df_exprLevel
=
match
.
exprLevel_byGene
(
df_tsv_exprL
,
df_gene_transcript
)
df_match
=
match
.
match_byGene
(
df_dict_reprTrans
,
df_exprLevel
)
match
.
output_tsv
(
df_match
)
ref_path
=
tFun
.
find_path
(
"
test_ref_output.tsv
"
)
output_path
=
tFun
.
find_output
()
with
open
(
ref_path
,
'
r
'
)
as
t1
,
open
(
output_path
,
'
r
'
)
as
t2
:
fileRef
=
t1
.
readlines
()
fileOutput
=
t2
.
readlines
()
assert
sorted
(
fileRef
)
==
sorted
(
fileOutput
),
"
the output does
'
t match the expected tsv file
"
def
test_match_reprTranscript_expressionLevel
():
input_path
=
tFun
.
find_path
(
"
test_gene_exprL
"
)
intermediate_path
=
tFun
.
find_path_intermediateFile
()
dict_repr_test
=
{
'
ENSMUSG00000079415
'
:
'
ENSMUST00000112933
'
,
"
ENSMUSG00000024691
"
:
"
ENSMUST00000025595
"
,
"
ENSMUSG00000063683
"
:
"
ENSMUST00000119960
"
}
match
.
match_reprTranscript_expressionLevel
(
input_path
,
dict_repr_test
,
intermediate_path
)
ref_path
=
tFun
.
find_path
(
"
test_ref_output.tsv
"
)
output_path
=
tFun
.
find_output
()
with
open
(
ref_path
,
'
r
'
)
as
t1
,
\
open
(
output_path
,
'
r
'
)
as
t2
,
\
open
(
input_path
,
'
r
'
)
as
t3
:
fileRef
=
t1
.
readlines
()
fileOutput
=
t2
.
readlines
()
fileInput
=
t3
.
readlines
()
assert
sorted
(
fileRef
)
==
sorted
(
fileOutput
),
"
the output does
'
t match the expected tsv file
"
assert
sorted
(
fileRef
)
!=
sorted
(
fileInput
),
"
the output does
'
t match the expected tsv file
"
test_dict_reprTrans_to_df
()
test_txt_to_dict
()
test_transcripts_by_gene_inDf
()
test_tsv_or_csv_to_df
()
test_exprLevel_byGene
()
test_match_byGene
()
test_output_tsv
()
test_match_reprTranscript_expressionLevel
()
print
(
"
test_match is done ! No error was found
"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment