Skip to content
Snippets Groups Projects
Commit 76c875ff authored by Larissa Glass's avatar Larissa Glass Committed by Michael Zimmermann
Browse files

Resolve "Process annotations file"

parent 4b19dd95
No related branches found
No related tags found
1 merge request!4Resolve "Process annotations file"
import logging
import pandas as pd
LOG = logging.getLogger(__name__)
def read_abundances(transcripts_file: str) -> pd.DataFrame:
"""Read abundance file into dataframe
Args:
transcripts_file (str): Input filename
Returns:
pd.DataFrame: Transcript abundances ("id", "count")
"""
cols: list = ["id", "count"]
if transcripts_file.endswith(".tsv"):
return pd.read_table(transcripts_file, header=None, names=cols)
elif transcripts_file.endswith(".csv"):
return pd.read_csv(transcripts_file, header=None, names=cols)
def filter_df(df: pd.DataFrame, transcripts: list = []) -> pd.DataFrame:
# Filter annotations to exon and highest transcript support level.
# If list of transcript ids is given, filter for that as well.
df_filter = df[
(df["feature"] == "exon")
& (df["free_text"].str.contains('transcript_support_level "1"'))
]
if len(transcripts) > 0:
df_filter = df_filter.str.contains("|".join(transcripts), regex=True)
return df_filter
def str_to_dict(s: str) -> dict:
# split between key/value pairs
# remove empty list items and split key, value pairs
item_list: list = [x.split() for x in s.split(";") if len(x) > 0]
# remove quotes for values and return dictionary
return {item[0]: item[1].strip('"') for item in item_list}
def dict_to_str(d: dict) -> str:
# join key, value pairs from dictionary with a space in a list,
# then join items in list by ;
# end on ;
# check if value is nan
s: str = (
"; ".join([f'{key} "{value}"' for key, value in d.items() if value == value])
+ ";"
)
return s
def reverse_parse_free_text(df_all: pd.DataFrame) -> pd.DataFrame:
# the first 8 columns should be constant according to gtf file standard
# we assume that further columns are parsed free text columns
df_free_text = df_all.iloc[:, 8:]
df = df_all.iloc[:, :8]
df["free_text"] = df_free_text.agg(pd.Series.to_dict, axis=1).apply(dict_to_str)
return df
def write_gtf(df: pd.DataFrame, filename: str) -> None:
# Make sure the data types are correct.
df = df.astype(Gtf.dtypes)
df.to_csv(
filename,
sep="\t",
header=False,
index=False,
quoting=None,
quotechar="'",
mode="a",
)
def write_header(annotations_file: str) -> None:
with open(annotations_file, "w") as fh:
fh.write("\t".join(Gtf.dtypes.keys()) + "\n")
class Gtf:
"""Class to read transcripts annotations file and parse it into a pandas Dataframe.
Args:
annotations_file: Path to gtf file.
Attributes:
annotations_file: File with transcript annotation of the genome
"""
dtypes = {
"seqname": object,
"source": object,
"feature": object,
"start": int,
"end": int,
"score": object,
"strand": object,
"frame": object,
"free_text": object,
}
def __init__(self):
self.parsed = False
self.original_columns = list(self.dtypes.keys())
self.free_text_columns = []
def read_file(self, annotations_file: str) -> None:
# for large annotation files, iterate over lines and filter before saving to dataframe
reader = pd.read_table(
annotations_file,
sep="\t",
comment="#",
names=self.dtypes.keys(),
dtype=self.dtypes,
chunksize=100000,
iterator=True,
)
self.df = pd.concat([filter_df(chunk) for chunk in reader])
def from_dataframe(df: pd.DataFrame) -> None:
self.free_text_columns = [
col for col in df.columns if col not in self.original_columns
]
self.df = df
if not "free_text" in df.columns:
self.parsed = True
def parse_free_text(self):
assert self.parsed == False
# create dataframe with columns for values in free_text column
df_free_text = self.df["free_text"].map(str_to_dict).apply(pd.Series)
# remember which columns come from free_text
self.free_text_columns = df_free_text.columns
# join free_text columns to original dataframe and drop the "free_text" column itself
self.df = self.df.drop("free_text", axis=1)
self.original_columns = self.df.columns
self.df = self.df.join(df_free_text, how="inner")
# remember that current dataframe is parsed, i.e. can't be written in gtf format
self.parsed = True
def reverse_parse_free_text(self):
assert self.parsed == True
# create dataframe with only free_text columns
df_free_text = self.df[self.free_text_columns]
# filter current dataframe to only original columns, except "free_text" column
self.df = self.df[self.original_columns]
# undo parsing and save result in "free_text" column
self.df["free_text"] = df_free_text.agg(pd.Series.to_dict, axis=1).apply(
dict_to_str
)
# remember that current dataframe is not parsed
self.parsed = False
def pick_transcript(self, transcript_id: str) -> pd.DataFrame:
return self.df.query(f"transcript_id == '{transcript_id}'")
def sample_transcripts(
input_transcripts_file: str,
input_annotations_file: str,
prob_inclusion: float,
output_transcripts_file: str,
output_annotations_file: str,
):
transcripts = read_abundances(input_transcripts_file)
annotations = Gtf()
annotations.read_file(input_annotations_file)
annotations.parse_free_text()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment