Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Transcript structure generator
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
zavolan_group
tools
Transcript structure generator
Commits
76c875ff
Commit
76c875ff
authored
Nov 7, 2022
by
Larissa Glass
Committed by
Michael Zimmermann
Nov 7, 2022
Browse files
Options
Downloads
Patches
Plain Diff
Resolve "Process annotations file"
parent
4b19dd95
No related branches found
No related tags found
1 merge request
!4
Resolve "Process annotations file"
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
tsg/main.py
+176
-0
176 additions, 0 deletions
tsg/main.py
with
176 additions
and
0 deletions
tsg/main.py
0 → 100644
+
176
−
0
View file @
76c875ff
import
logging
import
pandas
as
pd
LOG
=
logging
.
getLogger
(
__name__
)
def
read_abundances
(
transcripts_file
:
str
)
->
pd
.
DataFrame
:
"""
Read abundance file into dataframe
Args:
transcripts_file (str): Input filename
Returns:
pd.DataFrame: Transcript abundances (
"
id
"
,
"
count
"
)
"""
cols
:
list
=
[
"
id
"
,
"
count
"
]
if
transcripts_file
.
endswith
(
"
.tsv
"
):
return
pd
.
read_table
(
transcripts_file
,
header
=
None
,
names
=
cols
)
elif
transcripts_file
.
endswith
(
"
.csv
"
):
return
pd
.
read_csv
(
transcripts_file
,
header
=
None
,
names
=
cols
)
def
filter_df
(
df
:
pd
.
DataFrame
,
transcripts
:
list
=
[])
->
pd
.
DataFrame
:
# Filter annotations to exon and highest transcript support level.
# If list of transcript ids is given, filter for that as well.
df_filter
=
df
[
(
df
[
"
feature
"
]
==
"
exon
"
)
&
(
df
[
"
free_text
"
].
str
.
contains
(
'
transcript_support_level
"
1
"'
))
]
if
len
(
transcripts
)
>
0
:
df_filter
=
df_filter
.
str
.
contains
(
"
|
"
.
join
(
transcripts
),
regex
=
True
)
return
df_filter
def
str_to_dict
(
s
:
str
)
->
dict
:
# split between key/value pairs
# remove empty list items and split key, value pairs
item_list
:
list
=
[
x
.
split
()
for
x
in
s
.
split
(
"
;
"
)
if
len
(
x
)
>
0
]
# remove quotes for values and return dictionary
return
{
item
[
0
]:
item
[
1
].
strip
(
'"'
)
for
item
in
item_list
}
def
dict_to_str
(
d
:
dict
)
->
str
:
# join key, value pairs from dictionary with a space in a list,
# then join items in list by ;
# end on ;
# check if value is nan
s
:
str
=
(
"
;
"
.
join
([
f
'
{
key
}
"
{
value
}
"'
for
key
,
value
in
d
.
items
()
if
value
==
value
])
+
"
;
"
)
return
s
def
reverse_parse_free_text
(
df_all
:
pd
.
DataFrame
)
->
pd
.
DataFrame
:
# the first 8 columns should be constant according to gtf file standard
# we assume that further columns are parsed free text columns
df_free_text
=
df_all
.
iloc
[:,
8
:]
df
=
df_all
.
iloc
[:,
:
8
]
df
[
"
free_text
"
]
=
df_free_text
.
agg
(
pd
.
Series
.
to_dict
,
axis
=
1
).
apply
(
dict_to_str
)
return
df
def
write_gtf
(
df
:
pd
.
DataFrame
,
filename
:
str
)
->
None
:
# Make sure the data types are correct.
df
=
df
.
astype
(
Gtf
.
dtypes
)
df
.
to_csv
(
filename
,
sep
=
"
\t
"
,
header
=
False
,
index
=
False
,
quoting
=
None
,
quotechar
=
"'"
,
mode
=
"
a
"
,
)
def
write_header
(
annotations_file
:
str
)
->
None
:
with
open
(
annotations_file
,
"
w
"
)
as
fh
:
fh
.
write
(
"
\t
"
.
join
(
Gtf
.
dtypes
.
keys
())
+
"
\n
"
)
class
Gtf
:
"""
Class to read transcripts annotations file and parse it into a pandas Dataframe.
Args:
annotations_file: Path to gtf file.
Attributes:
annotations_file: File with transcript annotation of the genome
"""
dtypes
=
{
"
seqname
"
:
object
,
"
source
"
:
object
,
"
feature
"
:
object
,
"
start
"
:
int
,
"
end
"
:
int
,
"
score
"
:
object
,
"
strand
"
:
object
,
"
frame
"
:
object
,
"
free_text
"
:
object
,
}
def
__init__
(
self
):
self
.
parsed
=
False
self
.
original_columns
=
list
(
self
.
dtypes
.
keys
())
self
.
free_text_columns
=
[]
def
read_file
(
self
,
annotations_file
:
str
)
->
None
:
# for large annotation files, iterate over lines and filter before saving to dataframe
reader
=
pd
.
read_table
(
annotations_file
,
sep
=
"
\t
"
,
comment
=
"
#
"
,
names
=
self
.
dtypes
.
keys
(),
dtype
=
self
.
dtypes
,
chunksize
=
100000
,
iterator
=
True
,
)
self
.
df
=
pd
.
concat
([
filter_df
(
chunk
)
for
chunk
in
reader
])
def
from_dataframe
(
df
:
pd
.
DataFrame
)
->
None
:
self
.
free_text_columns
=
[
col
for
col
in
df
.
columns
if
col
not
in
self
.
original_columns
]
self
.
df
=
df
if
not
"
free_text
"
in
df
.
columns
:
self
.
parsed
=
True
def
parse_free_text
(
self
):
assert
self
.
parsed
==
False
# create dataframe with columns for values in free_text column
df_free_text
=
self
.
df
[
"
free_text
"
].
map
(
str_to_dict
).
apply
(
pd
.
Series
)
# remember which columns come from free_text
self
.
free_text_columns
=
df_free_text
.
columns
# join free_text columns to original dataframe and drop the "free_text" column itself
self
.
df
=
self
.
df
.
drop
(
"
free_text
"
,
axis
=
1
)
self
.
original_columns
=
self
.
df
.
columns
self
.
df
=
self
.
df
.
join
(
df_free_text
,
how
=
"
inner
"
)
# remember that current dataframe is parsed, i.e. can't be written in gtf format
self
.
parsed
=
True
def
reverse_parse_free_text
(
self
):
assert
self
.
parsed
==
True
# create dataframe with only free_text columns
df_free_text
=
self
.
df
[
self
.
free_text_columns
]
# filter current dataframe to only original columns, except "free_text" column
self
.
df
=
self
.
df
[
self
.
original_columns
]
# undo parsing and save result in "free_text" column
self
.
df
[
"
free_text
"
]
=
df_free_text
.
agg
(
pd
.
Series
.
to_dict
,
axis
=
1
).
apply
(
dict_to_str
)
# remember that current dataframe is not parsed
self
.
parsed
=
False
def
pick_transcript
(
self
,
transcript_id
:
str
)
->
pd
.
DataFrame
:
return
self
.
df
.
query
(
f
"
transcript_id ==
'
{
transcript_id
}
'"
)
def
sample_transcripts
(
input_transcripts_file
:
str
,
input_annotations_file
:
str
,
prob_inclusion
:
float
,
output_transcripts_file
:
str
,
output_annotations_file
:
str
,
):
transcripts
=
read_abundances
(
input_transcripts_file
)
annotations
=
Gtf
()
annotations
.
read_file
(
input_annotations_file
)
annotations
.
parse_free_text
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment