Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Transcript structure generator
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
zavolan_group
tools
Transcript structure generator
Merge requests
!5
Resolve "Generate transcripts"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "Generate transcripts"
4-generate-transcripts
into
main
Overview
0
Commits
7
Pipelines
0
Changes
1
Merged
Larissa Glass
requested to merge
4-generate-transcripts
into
main
2 years ago
Overview
0
Commits
7
Pipelines
0
Changes
1
Expand
Closes
#4 (closed)
0
0
Merge request reports
Compare
main
version 1
1c4411c1
2 years ago
main (base)
and
version 1
latest version
bfb0c929
7 commits,
2 years ago
version 1
1c4411c1
5 commits,
2 years ago
1 file
+
303
−
0
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
tsg/main.py
0 → 100644
+
303
−
0
Options
import
logging
import
numpy
as
np
import
pandas
as
pd
LOG
=
logging
.
getLogger
(
__name__
)
def
read_abundances
(
transcripts_file
:
str
)
->
pd
.
DataFrame
:
"""
Read abundance file into dataframe
Args:
transcripts_file (str): Input filename
Returns:
pd.DataFrame: Transcript abundances (
"
id
"
,
"
count
"
)
"""
cols
:
list
=
[
"
id
"
,
"
count
"
]
if
transcripts_file
.
endswith
(
"
.tsv
"
):
return
pd
.
read_table
(
transcripts_file
,
header
=
None
,
names
=
cols
)
elif
transcripts_file
.
endswith
(
"
.csv
"
):
return
pd
.
read_csv
(
transcripts_file
,
header
=
None
,
names
=
cols
)
def
filter_df
(
df
:
pd
.
DataFrame
,
transcripts
:
list
=
[])
->
pd
.
DataFrame
:
# Filter annotations to exon and highest transcript support level.
# If list of transcript ids is given, filter for that as well.
df_filter
=
df
[
(
df
[
"
feature
"
]
==
"
exon
"
)
&
(
df
[
"
free_text
"
].
str
.
contains
(
'
transcript_support_level
"
1
"'
))
]
if
len
(
transcripts
)
>
0
:
df_filter
=
df_filter
.
str
.
contains
(
"
|
"
.
join
(
transcripts
),
regex
=
True
)
return
df_filter
def
str_to_dict
(
s
:
str
)
->
dict
:
# split between key/value pairs
# remove empty list items and split key, value pairs
item_list
:
list
=
[
x
.
split
()
for
x
in
s
.
split
(
"
;
"
)
if
len
(
x
)
>
0
]
# remove quotes for values and return dictionary
return
{
item
[
0
]:
item
[
1
].
strip
(
'"'
)
for
item
in
item_list
}
def
dict_to_str
(
d
:
dict
)
->
str
:
# join key, value pairs from dictionary with a space in a list,
# then join items in list by ;
# end on ;
# check if value is nan
s
:
str
=
(
"
;
"
.
join
([
f
'
{
key
}
"
{
value
}
"'
for
key
,
value
in
d
.
items
()
if
value
==
value
])
+
"
;
"
)
return
s
def
reverse_parse_free_text
(
df_all
:
pd
.
DataFrame
)
->
pd
.
DataFrame
:
# the first 8 columns should be constant according to gtf file standard
# we assume that further columns are parsed free text columns
df_free_text
=
df_all
.
iloc
[:,
8
:]
df
=
df_all
.
iloc
[:,
:
8
]
df
[
"
free_text
"
]
=
df_free_text
.
agg
(
pd
.
Series
.
to_dict
,
axis
=
1
).
apply
(
dict_to_str
)
return
df
def
write_gtf
(
df
:
pd
.
DataFrame
,
filename
:
str
)
->
None
:
# Make sure the data types are correct.
df
=
df
.
astype
(
Gtf
.
dtypes
)
df
.
to_csv
(
filename
,
sep
=
"
\t
"
,
header
=
False
,
index
=
False
,
quoting
=
None
,
quotechar
=
"'"
,
mode
=
"
a
"
,
)
def
write_header
(
annotations_file
:
str
)
->
None
:
with
open
(
annotations_file
,
"
w
"
)
as
fh
:
fh
.
write
(
"
\t
"
.
join
(
Gtf
.
dtypes
.
keys
())
+
"
\n
"
)
class
Gtf
:
"""
Class to read transcripts annotations file and parse it into a pandas Dataframe.
Args:
annotations_file: Path to gtf file.
Attributes:
annotations_file: File with transcript annotation of the genome
"""
dtypes
=
{
"
seqname
"
:
object
,
"
source
"
:
object
,
"
feature
"
:
object
,
"
start
"
:
int
,
"
end
"
:
int
,
"
score
"
:
object
,
"
strand
"
:
object
,
"
frame
"
:
object
,
"
free_text
"
:
object
,
}
def
__init__
(
self
):
self
.
parsed
=
False
self
.
original_columns
=
list
(
self
.
dtypes
.
keys
())
self
.
free_text_columns
=
[]
def
read_file
(
self
,
annotations_file
:
str
)
->
None
:
# for large annotation files, iterate over lines and filter before saving to dataframe
reader
=
pd
.
read_table
(
annotations_file
,
sep
=
"
\t
"
,
comment
=
"
#
"
,
names
=
self
.
dtypes
.
keys
(),
dtype
=
self
.
dtypes
,
chunksize
=
100000
,
iterator
=
True
,
)
self
.
df
=
pd
.
concat
([
filter_df
(
chunk
)
for
chunk
in
reader
])
def
from_dataframe
(
df
:
pd
.
DataFrame
)
->
None
:
self
.
free_text_columns
=
[
col
for
col
in
df
.
columns
if
col
not
in
self
.
original_columns
]
self
.
df
=
df
if
not
"
free_text
"
in
df
.
columns
:
self
.
parsed
=
True
def
parse_free_text
(
self
):
assert
self
.
parsed
==
False
# create dataframe with columns for values in free_text column
df_free_text
=
self
.
df
[
"
free_text
"
].
map
(
str_to_dict
).
apply
(
pd
.
Series
)
# remember which columns come from free_text
self
.
free_text_columns
=
df_free_text
.
columns
# join free_text columns to original dataframe and drop the "free_text" column itself
self
.
df
=
self
.
df
.
drop
(
"
free_text
"
,
axis
=
1
)
self
.
original_columns
=
self
.
df
.
columns
self
.
df
=
self
.
df
.
join
(
df_free_text
,
how
=
"
inner
"
)
# remember that current dataframe is parsed, i.e. can't be written in gtf format
self
.
parsed
=
True
def
reverse_parse_free_text
(
self
):
assert
self
.
parsed
==
True
# create dataframe with only free_text columns
df_free_text
=
self
.
df
[
self
.
free_text_columns
]
# filter current dataframe to only original columns, except "free_text" column
self
.
df
=
self
.
df
[
self
.
original_columns
]
# undo parsing and save result in "free_text" column
self
.
df
[
"
free_text
"
]
=
df_free_text
.
agg
(
pd
.
Series
.
to_dict
,
axis
=
1
).
apply
(
dict_to_str
)
# remember that current dataframe is not parsed
self
.
parsed
=
False
def
pick_transcript
(
self
,
transcript_id
:
str
)
->
pd
.
DataFrame
:
return
self
.
df
.
query
(
f
"
transcript_id ==
'
{
transcript_id
}
'"
)
class
TranscriptGenerator
:
def
__init__
(
self
,
transcript_id
:
str
,
transcript_count
:
int
,
transcript_df
:
pd
.
DataFrame
,
prob_inclusion
:
float
,
):
assert
len
(
transcript_df
)
>
0
assert
transcript_count
>
0
assert
(
prob_inclusion
>=
0
)
and
(
prob_inclusion
<=
1
)
self
.
id
=
transcript_id
self
.
count
=
transcript_count
self
.
df
=
transcript_df
self
.
no_exons
=
len
(
transcript_df
)
self
.
strand
=
self
.
df
[
"
strand
"
].
unique
().
item
()
self
.
prob_inclusion
=
prob_inclusion
def
_get_inclusions
(
self
)
->
np
.
array
:
"""
Generate inclusions array where each column corresponds to one sample and the number of columns corresponds to the number of samples.
Returns:
np.array: inclusions, where True means intron inclusion
"""
inclusion_arr
=
np
.
random
.
rand
(
self
.
no_exons
,
self
.
count
)
<
self
.
prob_inclusion
if
self
.
strand
==
"
+
"
:
inclusion_arr
[
-
1
,
:]
=
False
elif
self
.
strand
==
"
-
"
:
inclusion_arr
[
-
1
,
:]
=
False
return
inclusion_arr
def
_get_unique_inclusions
(
self
)
->
(
list
,
np
.
array
,
np
.
array
):
inclusion_arr
=
self
.
_get_inclusions
()
# Unique intron inclusion arrays and counts
inclusion_arr_unique
,
counts
=
np
.
unique
(
inclusion_arr
,
axis
=
1
,
return_counts
=
True
)
# Name for each generated transcript
names
=
[]
for
i
in
range
(
inclusion_arr_unique
.
shape
[
1
]):
if
np
.
all
(
inclusion_arr_unique
[:,
i
]
==
False
,
axis
=
0
):
names
.
append
(
self
.
id
)
else
:
names
.
append
(
f
"
{
self
.
id
}
_
{
i
}
"
)
return
names
,
inclusion_arr_unique
,
counts
def
_get_df
(
self
,
inclusions
:
np
.
array
,
transcript_id
:
str
)
->
pd
.
DataFrame
:
"""
Take as input a dataframe filtered to one transcript and a boolean vector denoting intron inclusions.
Args:
inclusions (np.array): boolean vector denoting intron inclusion
transcript_id (str): transcript id
Returns:
pd.DataFrame: Derived dataframe
"""
df_generated
=
self
.
df
.
copy
()
if
self
.
strand
==
"
+
"
:
origninal_end
=
df_generated
[
"
end
"
]
df_generated
[
"
end
"
]
=
np
.
where
(
inclusions
,
df_generated
[
"
start
"
].
shift
(
periods
=-
1
,
fill_value
=-
1
)
-
1
,
origninal_end
)
if
self
.
strand
==
"
-
"
:
origninal_start
=
df_generated
[
"
start
"
]
df_generated
[
"
start
"
]
=
np
.
where
(
inclusions
,
df_generated
[
"
end
"
].
shift
(
periods
=-
1
,
fill_value
=-
1
)
+
1
,
origninal_start
)
original_id
=
df_generated
[
"
exon_id
"
]
df_generated
[
"
exon_id
"
]
=
np
.
where
(
inclusions
,
df_generated
[
"
exon_id
"
]
+
"
_
"
+
np
.
arange
(
len
(
df_generated
)).
astype
(
str
),
original_id
,
)
df_generated
[
"
transcript_id
"
]
=
transcript_id
return
df_generated
def
generate_transcripts
(
self
,
filename
:
str
)
->
None
:
"""
Write transcripts to file.
Args:
filename (str): Output csv filename
"""
ids
,
inclusions
,
counts
=
self
.
_get_unique_inclusions
()
with
open
(
filename
,
"
a
"
)
as
fh
:
for
transcript_id
,
transcript_count
in
zip
(
ids
,
counts
):
fh
.
write
(
f
"
{
transcript_id
}
,
{
transcript_count
}
\n
"
)
def
generate_annotations
(
self
,
filename
:
str
)
->
None
:
ids
,
inclusions
,
counts
=
self
.
_get_unique_inclusions
()
n_unique
=
len
(
ids
)
try
:
df
=
pd
.
concat
(
[
self
.
_get_df
(
inclusions
[:,
i
],
ids
[
i
])
for
i
in
range
(
n_unique
)]
)
df
=
reverse_parse_free_text
(
df
)
write_gtf
(
df
,
filename
)
LOG
.
info
(
f
"
Transcript
{
self
.
id
}
sampled
"
)
except
ValueError
:
LOG
.
error
(
f
"
Transcript
{
self
.
id
}
could not be sampled.
"
)
def
sample_transcripts
(
input_transcripts_file
:
str
,
input_annotations_file
:
str
,
prob_inclusion
:
float
,
output_transcripts_file
:
str
,
output_annotations_file
:
str
,
):
transcripts
=
read_abundances
(
input_transcripts_file
)
annotations
=
Gtf
()
annotations
.
read_file
(
input_annotations_file
)
annotations
.
parse_free_text
()
# Set up output file, write header once and append data in loop
write_header
(
output_annotations_file
)
for
_
,
row
in
transcripts
.
iterrows
():
transcript_id
=
row
[
"
id
"
]
transcript_count
=
row
[
"
count
"
]
transcript_df
=
annotations
.
pick_transcript
(
transcript_id
)
transcripts
=
TranscriptGenerator
(
transcript_id
,
transcript_count
,
transcript_df
,
prob_inclusion
=
prob_inclusion
,
)
transcripts
.
generate_annotations
(
output_annotations_file
)
transcripts
.
generate_transcripts
(
output_transcripts_file
)
Loading