Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# this is a python rewrite of the original ijm published at
# https://github.com/Hyojung-Choo/Myosoft/blob/Myosoft-hub/Scripts/central%20nuclei%20counter.ijm
# IJ imports
# TODO: are the imports RoiManager and ResultsTable needed when using the services?
from ij import IJ, WindowManager as wm
from ij.plugin import Duplicator, RoiEnlarger, RoiScaler
from trainableSegmentation import WekaSegmentation
from de.biovoxxel.toolbox import Extended_Particle_Analyzer
# Bio-formats imports
from loci.plugins import BF
from loci.plugins.in import ImporterOptions
# python imports
import time
import os
#@ String (visibility=MESSAGE, value="<html><b> Welcome to Myosoft - identify fibers! </b></html>") msg1
#@ File (label="Select directory with classifiers", style="directory") classifiers_dir
#@ File (label="Select directory for output", style="directory") output_dir
#@ File (label="Select image file", description="select your image") path_to_image
#@ Boolean (label="close image after processing", description="tick this box when using batch mode", value=False) close_raw
#@ String (visibility=MESSAGE, value="<html><b> Morphometric Gates </b></html>") msg2
#@ Integer (label="Min Area [um²]", value=10) minAr
#@ Integer (label="Max Area [um²]", value=6000) maxAr
#@ Float (label="Min Circularity", value=0.5) minCir
#@ Float (label="Max Circularity", value=1) maxCir
#@ Float (label="Min solidity", value=0.0) minSol
#@ Float (label="Max solidity", value=1) maxSol
#@ Integer (label="Min perimeter [um]", value=5) minPer
#@ Integer (label="Max perimeter [um]", value=300) maxPer
#@ Integer (label="Min min ferret [um]", value=0.1) minMinFer
#@ Integer (label="Max min ferret [um]", value=100) maxMinFer
#@ Integer (label="Min ferret AR", value=0) minFAR
#@ Integer (label="Max ferret AR", value=8) maxFAR
#@ Float (label="Min roundess", value=0.2) minRnd
#@ Float (label="Max roundess", value=1) maxRnd
#@ String (visibility=MESSAGE, value="<html><b> Expand ROIS to match fibers </b></html>") msg3
#@ Float (label="ROI expansion [microns]", value=1) enlarge
#@ String (visibility=MESSAGE, value="<html><b> channel positions in the hyperstack </b></html>") msg5
#@ Integer (label="Membrane staining channel number", style="slider", min=1, max=5, value=1) membrane_channel
#@ Integer (label="sub-tiling to economize RAM", style="slider", min=1, max=8, value=4) tiling_factor
#@ ResultsTable rt
#@ RoiManager rm
def fix_ij_options():
"""put IJ into a defined state
"""
# disable inverting LUT
IJ.run("Appearance...", " menu=0 16-bit=Automatic")
# set foreground color to be white, background black
IJ.run("Colors...", "foreground=white background=black selection=red")
# black BG for binary images and pad edges when eroding
IJ.run("Options...", "black pad")
# set saving format to .txt files
IJ.run("Input/Output...", "file=.txt save_column save_row")
# ============= DON’T MOVE UPWARDS =============
# set "Black Background" in "Binary Options"
IJ.run("Options...", "black")
# scale when converting = checked
IJ.run("Conversions...", "scale")
def fix_ij_dirs(path):
"""use forward slashes in directory paths
Parameters
----------
path : string
a directory path obtained from dialogue or script parameter
Returns
-------
string
a more robust path with forward slashes as separators
"""
fixed_path = str(path).replace("\\", "/")
fixed_path = fixed_path + "/"
return fixed_path
def open_image_with_BF(path_to_file):
""" use Bio-Formats to opens the first image from an image file path
Parameters
----------
path_to_file : string
path to the image file
Returns
-------
ImagePlus
the first imp stored in a give file
"""
options = ImporterOptions()
options.setColorMode(ImporterOptions.COLOR_MODE_GRAYSCALE)
options.setAutoscale(True)
options.setId(path_to_file)
imps = BF.openImagePlus(options) # is an array of ImagePlus
return imps[0]
def fix_BF_czi_imagetitle(imp):
image_title = os.path.basename( imp.getTitle() )
image_title = image_title.replace(".czi", "")
image_title = image_title.replace(" ", "_")
image_title = image_title.replace("_-_", "")
image_title = image_title.replace("__", "_")
image_title = image_title.replace("#", "Series")
return image_title
def clear_ij_roi_manager(rm):
"""delete all ROIs from the RoiManager
Parameters
----------
rm : RoiManager
a reference of the IJ-RoiManager
"""
rm.runCommand('reset')
def preprocess_membrane_channel(imp):
"""apply myosoft pre-processing steps for the membrane channel
Parameters
----------
imp : ImagePlus
a single channel image of the membrane staining
"""
IJ.run(imp, "Enhance Contrast", "saturated=0.35")
IJ.run(imp, "Apply LUT", "")
IJ.run(imp, "Enhance Contrast", "saturated=1")
IJ.run(imp, "8-bit", "")
IJ.run(imp, "Invert", "")
IJ.run(imp, "Convolve...", "text1=[-1.0 -1.0 -1.0 -1.0 -1.0\n-1.0 -1.0 -1.0 -1.0 0\n-1.0 -1.0 24.0 -1.0 -1.0\n-1.0 -1.0 -1.0 -1.0 -1.0\n-1.0 -1.0 -1.0 -1.0 0] normalize")
def apply_weka_model(model_path, imp, tiles_per_dim):
"""apply a pretrained WEKA model to an ImagePlus
Parameters
----------
model_path : string
path to the model file
imp : ImagePlus
ImagePlus to apply the model to
tiles_per_dim : integer
tiles the imp to save RAM
Returns
-------
ImagePlus
the result of the WEKA segmentation. One channel per class.
"""
segmentator = WekaSegmentation()
segmentator.loadClassifier( model_path )
result = segmentator.applyClassifier( imp, [tiles_per_dim, tiles_per_dim], 0, True ) #ImagePlus imp, int[x,y,z] tilesPerDim, int numThreads (0=all), boolean probabilityMaps
return result
def process_weka_result(imp):
"""apply myosoft pre-processing steps for the imp after WEKA classification to prepare it
for ROI detection with the extended particle analyzer
Parameters
----------
imp : ImagePlus
a single channel (= desired class) of the WEKA classification result imp
"""
IJ.run(imp, "8-bit", "")
IJ.run(imp, "Median...", "radius=3")
IJ.run(imp, "Gaussian Blur...", "sigma=2")
IJ.run(imp, "Auto Threshold", "method=MaxEntropy")
IJ.run(imp, "Invert", "")
def delete_channel(imp, channel_number):
"""delete a channel from target imp
Parameters
----------
imp : ImagePlus
the imp from which to delete target channel
channel_number : integer
the channel number to be deleted. starts at 0.
"""
imp.setC(channel_number)
IJ.run(imp, "Delete Slice", "delete=channel")
def run_extended_particle_analyzer( imp, eda_parameters ):
"""identifies ROIs in target imp using the extended particle analyzer of the BioVoxxel toolbox
with given parameters
Parameters
----------
imp : ImagePlus
the image on which to run the EPA on. Should be 8-bit thresholded
eda_parameters : array
all user defined parameters to restrict ROI identification
"""
epa = Extended_Particle_Analyzer()
epa.readInputImageParameters(imp)
epa.setDefaultParameterFields()
# expose all parameters explicitly
epa.usePixel = False
epa.usePixelForOutput = False
epa.Area = str(eda_parameters[0]) + "-" + str(eda_parameters[1])
epa.Extent = "0.00-1.00"
epa.Perimeter = str(eda_parameters[2]) + "-" + str(eda_parameters[3])
epa.Circularity = str(eda_parameters[4]) + "-" + str(eda_parameters[5])
epa.Roundness = str(eda_parameters[6]) + "-" + str(eda_parameters[7])
epa.Solidity = str(eda_parameters[8]) + "-" + str(eda_parameters[9])
epa.Compactness = "0.00-1.00"
epa.AR = "0-Infinity"
epa.FeretAR = str(eda_parameters[10]) + "-" + str(eda_parameters[11])
epa.EllipsoidAngle = "0-180"
epa.MaxFeret = "0-Infinity"
epa.MinFeret = str(eda_parameters[12]) + "-" + str(eda_parameters[13])
epa.FeretAngle = "0-180"
epa.COV = "0.00-1.00"
epa.Output = "Nothing"
epa.Redirect = "None"
epa.Correction = "None"
epa.Reset = False
epa.DisplayResults = False
epa.ClearResults = False
epa.Summarize = False
epa.AddToManager = True
epa.ExcludeEdges = False
epa.IncludeHoles = False
epa.defineParticleAnalyzers()
epa.particleAnalysis( imp.getProcessor(), imp, imp.getTitle() )
def measure_in_all_rois( imp, channel, rm ):
"""measures in all ROIS on a given channel of imp all parameters that are set in IJ "Set Measurements"
Parameters
----------
imp : ImagePlus
the imp to measure on
channel : integer
the channel to measure in. starts at 1.
rm : RoiManager
a reference of the IJ-RoiManager
"""
imp.setC(channel)
rm.runCommand(imp,"Deselect")
rm.runCommand(imp,"Measure")
def show_all_rois_on_image(rm, imp):
"""shows all ROIs in the ROiManager on imp
Parameters
----------
rm : RoiManager
a reference of the IJ-RoiManager
imp : ImagePlus
the imp on which to show the ROIs
"""
imp.show()
rm.runCommand(imp,"Show All")
def save_all_rois(rm, target):
"""save all ROIs in the RoiManager as zip to target path
Parameters
----------
rm : RoiManager
a reference of the IJ-RoiManager
target : string
the path in to store the ROIs. e.g. /my-images/resulting_rois.zip
"""
rm.runCommand("Save", target)
def enlarge_all_rois( amount_in_um, rm, pixel_size_in_um ):
"""enlarges all ROIs in the RoiManager by x scaled units
Parameters
----------
amount_in_um : float
the value by which to enlarge in scaled units, e.g 3.5
rm : RoiManager
a reference of the IJ-RoiManager
pixel_size_in_um : float
the pixel size, e.g. 0.65 px/um
"""
amount_px = amount_in_um / pixel_size_in_um
all_rois = rm.getRoisAsArray()
rm.reset()
for roi in all_rois:
enlarged_roi = RoiEnlarger.enlarge(roi, amount_px)
rm.addRoi(enlarged_roi)
def enhance_contrast( imp ):
"""use "Auto" Contrast & Brightness settings in each channel of imp
Parameters
----------
imp : ImagePlus
the imp on which to change C&B
"""
for channel in range( imp.getDimensions()[2] ):
imp.setC(channel + 1) # IJ channels start at 1
IJ.run(imp, "Enhance Contrast", "saturated=0.35")
def renumber_rois(rm):
"""rename all ROIs in the RoiManager according to their number
Parameters
----------
rm : RoiManager
a reference of the IJ-RoiManager
"""
number_of_rois = rm.getCount()
for roi in range( number_of_rois ):
rm.rename( roi, str(roi + 1) )
def setup_defined_ij(rm, rt):
"""set up a clean and defined Fiji user environment
Parameters
----------
rm : RoiManager
a reference of the IJ-RoiManager
rt : ResultsTable
a reference of the IJ-ResultsTable
"""
fix_ij_options()
rm.runCommand('reset')
rt.reset()
IJ.log("\\Clear")
execution_start_time = time.time()
setup_defined_ij(rm, rt)
# open image using Bio-Formats
path_to_image = fix_ij_dirs(path_to_image)
raw = open_image_with_BF(path_to_image)
# get image info
raw_image_calibration = raw.getCalibration()
raw_image_title = fix_BF_czi_imagetitle(raw)
# take care of paths and directories
output_dir = fix_ij_dirs(output_dir)
if not os.path.exists( str(output_dir + raw_image_title) ):
os.makedirs( str(output_dir + raw_image_title) )
output_dir = str( output_dir + raw_image_title ) + "/"
classifiers_dir = fix_ij_dirs(classifiers_dir)
primary_model = classifiers_dir + "primary.model"
secondary_model = classifiers_dir + "secondary_central_nuclei.model"
# update the log for the user
IJ.log( "Now working on " + str(raw_image_title) )
if raw_image_calibration.scaled() == False:
IJ.log("Your image is not spatially calibrated! Size measurements are only possible in [px].")
IJ.log( " -- settings used -- ")
IJ.log( "area = " + str(minAr) + "-" + str(maxAr) )
IJ.log( "perimeter = " + str(minPer) + "-" + str(maxPer) )
IJ.log( "circularity = " + str(minCir) + "-" + str(maxCir) )
IJ.log( "roundness = " + str(minRnd) + "-" + str(maxRnd) )
IJ.log( "solidity = " + str(minSol) + "-" + str(maxSol) )
IJ.log( "feret_ar = " + str(minFAR) + "-" + str(maxFAR) )
IJ.log( "min_feret = " + str(minMinFer) + "-" + str(maxMinFer) )
IJ.log( "ROI expansion [microns] = " + str(enlarge) )
IJ.log( "sub-tiling = " + str(tiling_factor) )
IJ.log( " -- settings used -- ")
# image (pre)processing and segmentation (-> ROIs)
membrane = Duplicator().run(raw, membrane_channel, membrane_channel, 1, 1, 1, 1) # imp, firstC, lastC, firstZ, lastZ, firstT, lastT
preprocess_membrane_channel(membrane)
weka_result1 = apply_weka_model(primary_model, membrane, tiling_factor )
delete_channel(weka_result1, 1)
weka_result2 = apply_weka_model(secondary_model, weka_result1, tiling_factor )
delete_channel(weka_result2, 1)
weka_result2.setCalibration(raw_image_calibration)
process_weka_result(weka_result2)
IJ.saveAs(weka_result2, "Tiff", output_dir + raw_image_title + "_all_fibers_binary")
eda_parameters = [minAr, maxAr, minPer, maxPer, minCir, maxCir, minRnd, maxRnd, minSol, maxSol, minFAR, maxFAR, minMinFer, maxMinFer]
raw.show() # EPA will not work if no image is shown
run_extended_particle_analyzer(weka_result2, eda_parameters)
# modify rois
rm.hide()
raw.hide()
enlarge_all_rois( enlarge, rm, raw_image_calibration.pixelWidth )
renumber_rois(rm)
save_all_rois( rm, output_dir + "all_fiber_rois.zip" )
# measure size & shape, save
IJ.run("Set Measurements...", "area perimeter shape feret's redirect=None decimal=4")
IJ.run("Clear Results", "")
measure_in_all_rois( raw, membrane_channel, rm )
rt.save(output_dir + "all_fibers_results.csv")
# dress up the original image, save a overlay-png, present original to the user
rm.show()
raw.show()
show_all_rois_on_image( rm, raw )
raw.setDisplayMode(IJ.COMPOSITE)
enhance_contrast( raw )
IJ.run("From ROI Manager", "") # ROIs -> overlays so they show up in the saved png
qc_duplicate = raw.duplicate()
IJ.saveAs(qc_duplicate, "PNG", output_dir + raw_image_title + "_all_fibers")
qc_duplicate.close()
wm.toFront( raw.getWindow() )
IJ.run("Remove Overlay", "")
raw.setDisplayMode(IJ.GRAYSCALE)
show_all_rois_on_image( rm, raw )
total_execution_time_min = (time.time() - execution_start_time) / 60.0
IJ.log("total time in minutes: " + str(total_execution_time_min))
IJ.log( "~~ all done ~~" )
IJ.selectWindow("Log")
IJ.saveAs("Text", str(output_dir + raw_image_title + "_all_fibers_Log"))
if close_raw == True:
raw.close()