Select Git revision
trajectory_analysis.py
Studer Gabriel authored
This commit doesn't make OpenStructure work with Python 3. The goal of this commit was to perform an automated port of the Python code and make it compile. The performed steps: - Edited CMakeLists.txt to search for Python with 3.6 as min version 3.6 is the Python version shipped by default with Ubuntu 18.04 LTS - Add version 3.6 to cmake_support/FindPython.cmake - Adapt setup_boost macro in cmake_support/OST.cmake to prefer versioned libraries and not first check for boost_python.so. In the example of Ubuntu 18.04, libboost_python.so is specific for Python 2 but libboost_python3.so is the one we want. - apply the following command: 2to3-2.7 -n -w <OST_DIR> - adapt base/pymod/wrap_base.cc, gui/pymod/wrap_gui.cc and gui/pymod/export_message_widget.cc as PyString functionalities do not exist anymore in the Python 3 interpreter (replaced by PyUnicode) - adapt gui/src/python_shell/python_interpreter_worker.hh to resolve issue discussed in https://stackoverflow.com/questions/23068700/embedding-python3-in-qt-5 Long story short: Qt does a typedef for "slots" which causes trouble with other headers that are pulled in from the Python interpreter
trajectory_analysis.py 9.69 KiB
"""
**This Module requires numpy**
This module contains functions to analyze trajectories, mainly
similiraty measures baed on RMSDS and pairwise distances.
Author: Niklaus Johner (niklaus.johner@unibas.ch)
"""
import ost.mol.alg
import ost.geom
from ost import LogError
import os
def smooth(vec,n):
#Function to smooth a vector or a list of floats
#for each element it takes the average over itself and the
#n elements on each side, so over (2n+1) elements
try:
vec2=vec.copy()
except:
vec2=vec[:]
for i in range(n):
v=0.0
count=1.0
v+=vec[i]
for j in range(n):
count+=1
v+=vec[i+j+1]
for j in range(i):
count+=1
v+=vec[i-(j+1)]
vec2[i]=v/float(count)
for i in range(1,n+1):
v=0.0
count=1.0
v+=vec[-i]
for j in range(n):
count+=1
v+=vec[-(i+j+1)]
for j in range(i-1):
count+=1
v+=vec[-i+j+1]
vec2[-i]=v/float(count)
for i in range(n,len(vec2)-n):
v=vec[i]
for j in range(n):
v+=vec[i+j+1]
v+=vec[i-j-1]
vec2[i]=v/float(2.*n+1.)
return vec2
"""
From here on the module needs numpy
"""
def RMSD_Matrix_From_Traj(t,sele,first=0,last=-1,align=True,align_sele=None):
"""
This function calculates a matrix M such that M[i,j] is the
RMSD (calculated on **sele**) between frames i and j of the trajectory **t**
aligned on sele.
:param t: the trajectory
:param sele: the selection used for alignment and RMSD calculation
:param first: the first frame of t to be used
:param last: the last frame of t to be used
:type t: :class:`~ost.mol.CoordGroupHandle`
:type sele: :class:`~ost.mol.EntityView`
:type first: :class:`int`
:type last: :class:`int`
:return: Returns a numpy N\ :subscript:`frames`\ xN\ :subscript:`frames` matrix,
where N\ :subscript:`frames` is the number of frames.
"""
if not align_sele:align_sele=sele
try:
import numpy as npy
if last==-1:last=t.GetFrameCount()
n_frames=last-first
rmsd_matrix=npy.identity(n_frames)
for i in range(n_frames):
if align:
t=ost.mol.alg.SuperposeFrames(t,align_sele,begin=first,end=last,ref=i)
eh=t.GetEntity()
t.CopyFrame(i)
rmsd_matrix[i,:]=ost.mol.alg.AnalyzeRMSD(t,sele,sele)
if i==0:
last=last-first
first=0
return rmsd_matrix
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
def PairwiseDistancesFromTraj(t,sele,first=0,last=-1,seq_sep=1):
"""
This function calculates the distances between any pair of atoms in **sele**
with sequence separation larger than **seq_sep** from a trajectory **t**.
It return a matrix containing one line for each atom pair and N\ :subscript:`frames` columns, where
N\ :subscript:`frames` is the number of frames in the trajectory.
:param t: the trajectory
:param sele: the selection used to determine the atom pairs
:param first: the first frame of t to be used
:param last: the last frame of t to be used
:param seq_sep: The minimal sequence separation between atom pairs
:type t: :class:`~ost.mol.CoordGroupHandle`
:type sele: :class:`~ost.mol.EntityView`
:type first: :class:`int`
:type last: :class:`int`
:type seq_sep: :class:`int`
:return: a numpy N\ :subscript:`pairs`\ xN\ :subscript:`frames` matrix.
"""
try:
import numpy as npy
if last==-1:last=t.GetFrameCount()
n_frames=last-first
n_var=0
for i,a1 in enumerate(sele.atoms):
for j,a2 in enumerate(sele.atoms):
if not j-i<seq_sep:n_var+=1
#n_var=sele.GetAtomCount()
#n_var=(n_var-1)*(n_var)/2.
dist_matrix=npy.zeros(n_frames*n_var)
dist_matrix=dist_matrix.reshape(n_var,n_frames)
k=0
for i,a1 in enumerate(sele.atoms):
for j,a2 in enumerate(sele.atoms):
if j-i<seq_sep:continue
dist_matrix[k]=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
k+=1
return dist_matrix
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
def DistanceMatrixFromPairwiseDistances(distances,p=2):
"""
This function calculates an distance matrix M(N\ :subscript:`frames`\ xN\ :subscript:`frames`\ ) from
the pairwise distances matrix D(N\ :subscript:`pairs`\ xN\ :subscript:`frames`\ ), where
N\ :subscript:`frames` is the number of frames in the trajectory
and N\ :subscript:`pairs` the number of atom pairs.
M[i,j] is the distance between frame i and frame j
calculated as a p-norm of the differences in distances
from the two frames (distance-RMSD for p=2).
:param distances: a pairwise distance matrix as obtained from
:py:func:`~mol.alg.trajectory_analysis.PairwiseDistancesFromTraj`
:param p: exponent used for the p-norm.
:return: a numpy N\ :subscript:`frames`\ xN\ :subscript:`frames` matrix, where N\ :subscript:`frames`
is the number of frames.
"""
try:
import numpy as npy
n1=distances.shape[0]
n2=distances.shape[1]
dist_mat=npy.identity(n2)
for i in range(n2):
for j in range(n2):
if j<=i:continue
d=(((abs(distances[:,i]-distances[:,j])**p).sum())/float(n1))**(1./p)
dist_mat[i,j]=d
dist_mat[j,i]=d
return dist_mat
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
def DistRMSDFromTraj(t,sele,ref_sele,radius=7.0,average=False,seq_sep=4,first=0,last=-1):
"""
This function calculates the distance RMSD from a trajectory.
The distances selected for the calculation are all the distances
between pair of atoms from residues that are at least **seq_sep** apart
in the sequence and that are smaller than **radius** in **ref_sel**.
The number and order of atoms in **ref_sele** and **sele** should be the same.
:param t: the trajectory
:param sele: the selection used to calculate the distance RMSD
:param ref_sele: the reference selection used to determine the atom pairs and reference distances
:param radius: the upper limit of distances in ref_sele considered for the calculation
:param seq_sep: the minimal sequence separation between atom pairs considered for the calculation
:param average: use the average distance in the trajectory as reference instead of the distance obtained from ref_sele
:param first: the first frame of t to be used
:param last: the last frame of t to be used
:type t: :class:`~ost.mol.CoordGroupHandle`
:type sele: :class:`~ost.mol.EntityView`
:type ref_sele: :class:`~ost.mol.EntityView`
:type radius: :class:`float`
:type average: :class:`bool`
:type first: :class:`int`
:type last: :class:`int`
:type seq_sep: :class:`int`
:return: a numpy vecor dist_rmsd(N\ :subscript:`frames`).
"""
if not sele.GetAtomCount()==ref_sele.GetAtomCount():
print('Not same number of atoms in the two views')
return
try:
import numpy as npy
if last==-1:last=t.GetFrameCount()
n_frames=last-first
dist_rmsd=npy.zeros(n_frames)
pair_count=0.0
for i,a1 in enumerate(ref_sele.atoms):
for j,a2 in enumerate(ref_sele.atoms):
if j<=i:continue
r1=a1.GetResidue()
c1=r1.GetChain()
r2=a2.GetResidue()
c2=r2.GetChain()
if c1==c2 and abs(r2.GetNumber().num-r1.GetNumber().num)<seq_sep:continue
d=ost.geom.Distance(a1.pos,a2.pos)
if d<radius:
a3=sele.atoms[i]
a4=sele.atoms[j]
d_traj=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a3.GetHandle(),a4.GetHandle())[first:last]
if average:d=npy.mean(d_traj)
for k,el in enumerate(d_traj):
dist_rmsd[k]+=(el-d)**2.0
pair_count+=1.0
return (dist_rmsd/float(pair_count))**0.5
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
def AverageDistanceMatrixFromTraj(t,sele,first=0,last=-1):
"""
This function calcultes the distance between each pair of atoms
in **sele**, averaged over the trajectory **t**.
:param t: the trajectory
:param sele: the selection used to determine the atom pairs
:param first: the first frame of t to be used
:param last: the last frame of t to be used
:type t: :class:`~ost.mol.CoordGroupHandle`
:type sele: :class:`~ost.mol.EntityView`
:type first: :class:`int`
:type last: :class:`int`
:return: a numpy N\ :subscript:`pairs`\ xN\ :subscript:`pairs` matrix, where N\ :subscript:`pairs`
is the number of atom pairs in **sele**.
"""
try:
import numpy as npy
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
n_atoms=sele.GetAtomCount()
M=npy.zeros([n_atoms,n_atoms])
for i,a1 in enumerate(sele.atoms):
for j,a2 in enumerate(sele.atoms):
if j>i:continue
d=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
M[i,j]=npy.mean(d)
M[j,i]=npy.mean(d)
return M
def AnalyzeDistanceFluctuationMatrix(t,sele,first=0,last=-1):
try:
import numpy as npy
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
n_atoms=sele.GetAtomCount()
M=npy.zeros([n_atoms,n_atoms])
for i,a1 in enumerate(sele.atoms):
for j,a2 in enumerate(sele.atoms):
if i>j:continue
d=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
M[j,i]=npy.std(d)
M[i,j]=npy.std(d)
return M
def IterativeSuperposition(t,sele,threshold=1.0,initial_sele=None,iterations=5,ref_frame=0):
if initial_sele:current_sele=initial_sele
else: current_sele=sele
for i in range(iterations):
t=ost.mol.alg.SuperposeFrames(t,current_sele,ref=ref_frame)
al=[a for a in sele.atoms if ost.mol.alg.AnalyzeRMSF(t,ost.mol.CreateViewFromAtoms([a]))<threshold]
if len(al)==0:return
current_sele=ost.mol.CreateViewFromAtoms(al)
return current_sele