Skip to content
Snippets Groups Projects
Commit fd1eba91 authored by Studer Gabriel's avatar Studer Gabriel
Browse files

drop numeric.h in the img module

parent b59eb6f6
Branches
Tags
No related merge requests found
......@@ -70,7 +70,6 @@ normalizer.hh
norm_linear.hh
norm_log.hh
norm_od.hh
numeric.h
power_spectrum.hh
randomize.hh
smooth_mask_image.hh
......
// Copyright (c) 2007, 2008 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
// Matrix and vector classes, based on Eigen2.
//
// Avoid using Eigen2 classes directly; instead typedef them here.
#ifndef LIBMV_NUMERIC_NUMERIC_H
#define LIBMV_NUMERIC_NUMERIC_H
#include <Eigen/Array>
#include <Eigen/Cholesky>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>
#include <ost/base.hh>
#include <iostream>
#if _WIN32 || __APPLE__
void static sincos (Real x, Real *sinx, Real *cosx) {
*sinx = sin(x);
*cosx = cos(x);
}
#endif //_WIN32 || __APPLE__
// #if _WIN32
// inline long lround(double d) {
// return (long)(d>0 ? d+0.5 : ceil(d-0.5));
// }
// inline int round(double d) {
// return (d>0) ? int(d+0.5) : int(d-0.5);
// }
// typedef unsigned int uint;
// #endif //_WIN32
namespace ost { namespace img { namespace alg {
typedef Eigen::MatrixXf Mat;
typedef Eigen::VectorXf Vec;
typedef Eigen::MatrixXf Matf;
typedef Eigen::VectorXf Vecf;
typedef Eigen::Matrix<unsigned int, Eigen::Dynamic, Eigen::Dynamic> Matu;
typedef Eigen::Matrix<unsigned int, Eigen::Dynamic, 1> Vecu;
typedef Eigen::Matrix<Real, 2, 2> Mat2;
typedef Eigen::Matrix<Real, 2, 3> Mat23;
typedef Eigen::Matrix<Real, 3, 3> Mat3;
typedef Eigen::Matrix<Real, 3, 4> Mat34;
typedef Eigen::Matrix<Real, 3, 5> Mat35;
typedef Eigen::Matrix<Real, 4, 3> Mat43;
typedef Eigen::Matrix<Real, 4, 4> Mat4;
typedef Eigen::Matrix<Real, 4, 6> Mat46;
typedef Eigen::Matrix<float, 2, 2> Mat2f;
typedef Eigen::Matrix<float, 2, 3> Mat23f;
typedef Eigen::Matrix<float, 3, 3> Mat3f;
typedef Eigen::Matrix<float, 3, 4> Mat34f;
typedef Eigen::Matrix<float, 3, 5> Mat35f;
typedef Eigen::Matrix<float, 4, 3> Mat43f;
typedef Eigen::Matrix<float, 4, 4> Mat4f;
typedef Eigen::Matrix<float, 4, 6> Mat46f;
typedef Eigen::Matrix<Real, 3, 3, Eigen::RowMajor> RMat3;
typedef Eigen::Matrix<Real, 2, Eigen::Dynamic> Mat2X;
typedef Eigen::Matrix<Real, 3, Eigen::Dynamic> Mat3X;
typedef Eigen::Matrix<Real, 4, Eigen::Dynamic> Mat4X;
typedef Eigen::Matrix<Real, Eigen::Dynamic, 2> MatX2;
typedef Eigen::Matrix<Real, Eigen::Dynamic, 3> MatX3;
typedef Eigen::Matrix<Real, Eigen::Dynamic, 4> MatX4;
typedef Eigen::Matrix<Real, Eigen::Dynamic, 9> MatX9;
typedef Eigen::Vector2f Vec2;
typedef Eigen::Vector3f Vec3;
typedef Eigen::Vector4f Vec4;
typedef Eigen::Matrix<Real, 5, 1> Vec5;
typedef Eigen::Matrix<Real, 6, 1> Vec6;
typedef Eigen::Matrix<Real, 7, 1> Vec7;
typedef Eigen::Matrix<Real, 8, 1> Vec8;
typedef Eigen::Matrix<Real, 9, 1> Vec9;
typedef Eigen::Matrix<Real, 10, 1> Vec10;
typedef Eigen::Matrix<Real, 13, 1> Vec13;
typedef Eigen::Vector2f Vec2f;
typedef Eigen::Vector3f Vec3f;
typedef Eigen::Vector4f Vec4f;
typedef Eigen::VectorXi VecXi;
typedef Eigen::Vector2i Vec2i;
typedef Eigen::Vector3i Vec3i;
typedef Eigen::Vector4i Vec4i;
typedef Eigen::Matrix<float,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> RMatf;
using Eigen::Map;
using Eigen::Dynamic;
using Eigen::Matrix;
// Find U, s, and VT such that
//
// A = U * diag(s) * VT
//
template <typename TMat, typename TVec>
inline void SVD(TMat *A, Vec *s, Mat *U, Mat *VT) {
assert(0);
}
// Solve the linear system Ax = 0 via SVD. Store the solution in x, such that
// ||x|| = 1.0. Return the singluar value corresponding to the solution.
// Destroys A and resizes x if necessary.
// TODO(maclean): Take the SVD of the transpose instead of this zero padding.
template <typename TMat, typename TVec>
Real Nullspace(TMat *A, TVec *nullspace) {
if (A->rows() >= A->cols()) {
Eigen::SVD<TMat> svd(*A);
(*nullspace) = svd.matrixV().col(A->cols()-1);
return svd.singularValues()(A->cols()-1);
}
// Extend A with rows of zeros to make it square. It's a hack, but is
// necessary until Eigen supports SVD with more columns than rows.
Mat A_extended(A->cols(), A->cols());
A_extended.block(A->rows(), 0, A->cols() - A->rows(), A->cols()).setZero();
A_extended.block(0,0, A->rows(), A->cols()) = (*A);
return Nullspace(&A_extended, nullspace);
}
// Solve the linear system Ax = 0 via SVD. Finds two solutions, x1 and x2, such
// that x1 is the best solution and x2 is the next best solution (in the L2
// norm sense). Store the solution in x1 and x2, such that ||x|| = 1.0. Return
// the singluar value corresponding to the solution x1. Destroys A and resizes
// x if necessary.
template <typename TMat, typename TVec1, typename TVec2>
Real Nullspace2(TMat *A, TVec1 *x1, TVec2 *x2) {
if (A->rows() >= A->cols()) {
Eigen::SVD<TMat> svd(*A);
Mat V = svd.matrixV();
*x1 = V.col(A->cols() - 1);
*x2 = V.col(A->cols() - 2);
return svd.singularValues()(A->cols()-1);
}
// Extend A with rows of zeros to make it square. It's a hack, but is
// necessary until Eigen supports SVD with more columns than rows.
Mat A_extended(A->cols(), A->cols());
A_extended.block(A->rows(), 0, A->cols() - A->rows(), A->cols()).setZero();
A_extended.block(0,0, A->rows(), A->cols()) = (*A);
return Nullspace2(&A_extended, x1, x2);
}
// In place transpose for square matrices.
template<class TA>
inline void TransposeInPlace(TA *A) {
*A = A->transpose().eval();
}
template<typename TVec>
inline Real NormL1(const TVec &x) {
return x.cwise().abs().sum();
}
template<typename TVec>
inline Real NormL2(const TVec &x) {
return x.norm();
}
template<typename TVec>
inline Real NormLInfinity(const TVec &x) {
return x.cwise().abs().maxCoeff();
}
template<typename TVec>
inline Real DistanceL1(const TVec &x, const TVec &y) {
return (x - y).cwise().abs().sum();
}
template<typename TVec>
inline Real DistanceL2(const TVec &x, const TVec &y) {
return (x - y).norm();
}
template<typename TVec>
inline Real DistanceLInfinity(const TVec &x, const TVec &y) {
return (x - y).cwise().abs().maxCoeff();
}
// Normalize a vector with the L1 norm, and return the norm before it was
// normalized.
template<typename TVec>
inline Real NormalizeL1(TVec *x) {
Real norm = NormL1(*x);
*x /= norm;
return norm;
}
// Normalize a vector with the L2 norm, and return the norm before it was
// normalized.
template<typename TVec>
inline Real NormalizeL2(TVec *x) {
Real norm = NormL2(*x);
*x /= norm;
return norm;
}
// Normalize a vector with the L^Infinity norm, and return the norm before it
// was normalized.
template<typename TVec>
inline Real NormalizeLInfinity(TVec *x) {
Real norm = NormLInfinity(*x);
*x /= norm;
return norm;
}
// Return the square of a number.
template<typename T>
inline T Square(T x) {
return x * x;
}
Mat3 RotationAroundX(Real angle);
Mat3 RotationAroundY(Real angle);
Mat3 RotationAroundZ(Real angle);
// Returns the rotation matrix of a rotation of angle |axis| around axis.
// This is computed using the Rodrigues formula, see:
// http://mathworld.wolfram.com/RodriguesRotationFormula.html
Mat3 RotationRodrigues(const Vec3 &axis);
// Make a rotation matrix such that center becomes the direction of the
// positive z-axis, and y is oriented close to up.
Mat3 LookAt(Vec3 center);
// Return a diagonal matrix from a vector containg the diagonal values.
template <typename TVec>
inline Mat Diag(const TVec &x) {
return x.asDiagonal();
}
template<typename TMat>
inline Real FrobeniusNorm(const TMat &A) {
return sqrt(A.cwise().abs2().sum());
}
template<typename TMat>
inline Real FrobeniusDistance(const TMat &A, const TMat &B) {
return FrobeniusNorm(A - B);
}
inline Vec3 CrossProduct(const Vec3 &x, const Vec3 &y) {
return x.cross(y);
}
Mat3 CrossProductMatrix(const Vec3 &x);
void MeanAndVarianceAlongRows(const Mat &A,
Vec *mean_pointer,
Vec *variance_pointer);
#if _WIN32
// TODO(bomboze): un-#if this for both platforms once tested under Windows
/* This solution was extensively discussed here http://forum.kde.org/viewtopic.php?f=74&t=61940 */
#define SUM_OR_DYNAMIC(x,y) (x==Eigen::Dynamic||y==Eigen::Dynamic)?Eigen::Dynamic:(x+y)
template<typename Derived1, typename Derived2>
struct hstack_return {
typedef typename Derived1::Scalar Scalar;
enum {
RowsAtCompileTime = Derived1::RowsAtCompileTime,
ColsAtCompileTime = SUM_OR_DYNAMIC(Derived1::ColsAtCompileTime, Derived2::ColsAtCompileTime),
Options = Derived1::Flags&Eigen::RowMajorBit ? Eigen::RowMajor : 0,
MaxRowsAtCompileTime = Derived1::MaxRowsAtCompileTime,
MaxColsAtCompileTime = SUM_OR_DYNAMIC(Derived1::MaxColsAtCompileTime, Derived2::MaxColsAtCompileTime)
};
typedef Eigen::Matrix<Scalar,
RowsAtCompileTime,
ColsAtCompileTime,
Options,
MaxRowsAtCompileTime,
MaxColsAtCompileTime> type;
};
template<typename Derived1, typename Derived2>
typename hstack_return<Derived1,Derived2>::type
HStack (const Eigen::MatrixBase<Derived1>& lhs, const Eigen::MatrixBase<Derived2>& rhs) {
typename hstack_return<Derived1,Derived2>::type res;
res.resize(lhs.rows(), lhs.cols()+rhs.cols());
res << lhs, rhs;
return res;
};
template<typename Derived1, typename Derived2>
struct vstack_return {
typedef typename Derived1::Scalar Scalar;
enum {
RowsAtCompileTime = SUM_OR_DYNAMIC(Derived1::RowsAtCompileTime, Derived2::RowsAtCompileTime),
ColsAtCompileTime = Derived1::ColsAtCompileTime,
Options = Derived1::Flags&Eigen::RowMajorBit ? Eigen::RowMajor : 0,
MaxRowsAtCompileTime = SUM_OR_DYNAMIC(Derived1::MaxRowsAtCompileTime, Derived2::MaxRowsAtCompileTime),
MaxColsAtCompileTime = Derived1::MaxColsAtCompileTime
};
typedef Eigen::Matrix<Scalar,
RowsAtCompileTime,
ColsAtCompileTime,
Options,
MaxRowsAtCompileTime,
MaxColsAtCompileTime> type;
};
template<typename Derived1, typename Derived2>
typename vstack_return<Derived1,Derived2>::type
VStack (const Eigen::MatrixBase<Derived1>& lhs, const Eigen::MatrixBase<Derived2>& rhs) {
typename vstack_return<Derived1,Derived2>::type res;
res.resize(lhs.rows()+rhs.rows(), lhs.cols());
res << lhs, rhs;
return res;
};
#else //_WIN32
// Since it is not possible to typedef privately here, use a macro.
// Always take dynamic columns if either side is dynamic.
#define COLS \
((ColsLeft == Eigen::Dynamic || ColsRight == Eigen::Dynamic) \
? Eigen::Dynamic : (ColsLeft + ColsRight))
// Same as above, except that prefer fixed size if either is fixed.
#define ROWS \
((RowsLeft == Eigen::Dynamic && RowsRight == Eigen::Dynamic) \
? Eigen::Dynamic \
: ((RowsLeft == Eigen::Dynamic) \
? RowsRight \
: RowsLeft \
) \
)
// TODO(keir): Add a static assert if both rows are at compiletime.
template<typename T, int RowsLeft, int RowsRight, int ColsLeft, int ColsRight>
Eigen::Matrix<T, ROWS, COLS>
HStack(const Eigen::Matrix<T, RowsLeft, ColsLeft> &left,
const Eigen::Matrix<T, RowsRight, ColsRight> &right) {
assert(left.rows() == right.rows());
int n = left.rows();
int m1 = left.cols();
int m2 = right.cols();
Eigen::Matrix<T, ROWS, COLS> stacked(n, m1 + m2);
stacked.block(0, 0, n, m1) = left;
stacked.block(0, m1, n, m2) = right;
return stacked;
}
// Reuse the above macros by swapping the order of Rows and Cols. Nasty, but
// the duplication is worse.
// TODO(keir): Add a static assert if both rows are at compiletime.
// TODO(keir): Mail eigen list about making this work for general expressions
// rather than only matrix types.
template<typename T, int RowsLeft, int RowsRight, int ColsLeft, int ColsRight>
Eigen::Matrix<T, COLS, ROWS>
VStack(const Eigen::Matrix<T, ColsLeft, RowsLeft> &top,
const Eigen::Matrix<T, ColsRight, RowsRight> &bottom) {
assert(top.cols() == bottom.cols());
int n1 = top.rows();
int n2 = bottom.rows();
int m = top.cols();
Eigen::Matrix<T, COLS, ROWS> stacked(n1 + n2, m);
stacked.block(0, 0, n1, m) = top;
stacked.block(n1, 0, n2, m) = bottom;
return stacked;
}
#undef COLS
#undef ROWS
#endif //_WIN32
void HorizontalStack(const Mat &left, const Mat &right, Mat *stacked);
template<typename TTop, typename TBot, typename TStacked>
void VerticalStack(const TTop &top, const TBot &bottom, TStacked *stacked) {
assert(top.cols() == bottom.cols());
int n1 = top.rows();
int n2 = bottom.rows();
int m = top.cols();
stacked->resize(n1 + n2, m);
stacked->block(0, 0, n1, m) = top;
stacked->block(n1, 0, n2, m) = bottom;
}
void MatrixColumn(const Mat &A, int i, Vec2 *v);
void MatrixColumn(const Mat &A, int i, Vec3 *v);
void MatrixColumn(const Mat &A, int i, Vec4 *v);
template <typename TMat, typename TCols>
TMat ExtractColumns(const TMat &A, const TCols &columns) {
TMat compressed(A.rows(), columns.size());
for (int i = 0; i < columns.size(); ++i) {
compressed.col(i) = A.col(columns[i]);
}
return compressed;
}
template <typename TMat, typename TDest>
void reshape(const TMat &a, int rows, int cols, TDest *b) {
assert(a.rows()*a.cols() == rows*cols);
b->resize(rows, cols);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
(*b)(i, j) = a[cols*i + j];
}
}
}
}}} // namespace mv
#endif // LIBMV_NUMERIC_NUMERIC_H
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment