Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
promod3_pipeline_benchmark
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
schwede
promod3_pipeline_benchmark
Commits
2cea55a3
Commit
2cea55a3
authored
4 years ago
by
Studer Gabriel
Browse files
Options
Downloads
Patches
Plain Diff
make molprobity promod3/modeller comparison plots quadratic
parent
d62287c2
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
modelling/do_plots.py
+46
-34
46 additions, 34 deletions
modelling/do_plots.py
modelling/promod3_vs_modeller_molprobity_scores.png
+0
-0
0 additions, 0 deletions
modelling/promod3_vs_modeller_molprobity_scores.png
with
46 additions
and
34 deletions
modelling/do_plots.py
+
46
−
34
View file @
2cea55a3
import
matplotlib.pyplot
as
plt
import
json
import
numpy
as
np
import
math
promod_label
=
'
ProMod3
'
...
...
@@ -41,8 +42,6 @@ for key in promod_data:
probity_diffs
.
append
(
probity_values_promod
[
-
1
]
-
probity_values_modeller
[
-
1
])
keys
.
append
(
key
)
for
a
,
b
in
zip
(
keys
,
lddt_diffs
):
print
(
a
,
b
)
# plot both in the same plot
xs
=
np
.
linspace
(
-
7.0
,
7.0
,
300
)
n_lddt
,
bins_lddt
,
patches_lddt
=
plt
.
hist
(
lddt_diffs
,
50
,
range
=
(
-
7.0
,
7.0
),
...
...
@@ -79,49 +78,62 @@ for key in promod_data:
probity_ramachandran_outliers_modeller
.
append
(
modeller_data
[
key
][
'
Ramachandran outliers
'
])
keys
.
append
(
key
)
#plt.clf()
fig
,
axs
=
plt
.
subplots
(
2
,
2
)
plt
.
clf
()
def
DoThingsWithAxes
(
ax
,
x_values
,
y_values
,
title
,
xlabel
,
ylabel
):
ax
.
plot
(
x_values
,
y_values
,
'
.
'
,
color
=
(
128.0
/
255
,
0.0
,
0.0
))
ax
.
plot
([
-
1.0
,
1000.0
],
[
-
1.0
,
1000
],
color
=
'
k
'
,
linestyle
=
'
--
'
)
ax
.
set_title
(
title
,
loc
=
'
left
'
,
y
=
1.08
,
x
=-
0.11
,
fontsize
=
'
x-large
'
)
ax
.
set_xlabel
(
xlabel
,
fontsize
=
'
large
'
)
ax
.
set_ylabel
(
ylabel
,
fontsize
=
'
large
'
)
max_val
=
math
.
ceil
(
max
([
max
(
x_values
),
max
(
y_values
)]))
ax
.
set_xlim
([
0
,
max_val
])
ax
.
set_ylim
([
0
,
max_val
])
ax
.
set_aspect
(
'
equal
'
,
'
box
'
)
tick_locations
=
list
()
step_size
=
None
if
max_val
<=
5
:
step_size
=
1
elif
max_val
<=
14
:
step_size
=
2
elif
max_val
<=
30
:
step_size
=
5
elif
max_val
<=
100
:
step_size
=
10
else
:
step_size
=
50
for
i
in
range
(
0
,
int
(
max_val
)
+
step_size
,
step_size
):
tick_locations
.
append
(
i
)
ax
.
set_xticks
(
tick_locations
)
ax
.
set_yticks
(
tick_locations
)
fig
,
axs
=
plt
.
subplots
(
2
,
2
,
figsize
=
(
7
,
7
))
probity_overall_ax
=
axs
[
0
,
0
]
probity_clash_ax
=
axs
[
0
,
1
]
probity_rotamer_ax
=
axs
[
1
,
0
]
probity_ramachandran_ax
=
axs
[
1
,
1
]
probity_overall_ax
.
plot
(
probity_values_promod
,
probity_values_modeller
,
'
.
'
,
color
=
cred
)
# plot zero line
probity_overall_ax
.
plot
([
0.0
,
5.0
],
[
0.0
,
5.0
],
'
.
'
,
color
=
'
k
'
,
linestyle
=
'
--
'
)
probity_overall_ax
.
set_title
(
'
a) Overall Score
'
,
loc
=
'
left
'
,
y
=
1.05
)
probity_overall_ax
.
set_xlabel
(
promod_label
)
probity_overall_ax
.
set_ylabel
(
modeller_label
)
probity_clash_ax
.
plot
(
probity_clash_promod
,
probity_clash_modeller
,
'
.
'
,
color
=
cred
)
# plot zero line
probity_clash_ax
.
plot
([
0.0
,
180.0
],
[
0.0
,
180.0
],
color
=
'
k
'
,
linestyle
=
'
--
'
)
probity_clash_ax
.
set_title
(
'
b) Clash Score
'
,
loc
=
'
left
'
,
y
=
1.05
)
probity_clash_ax
.
set_xlabel
(
promod_label
)
probity_clash_ax
.
set_ylabel
(
modeller_label
)
DoThingsWithAxes
(
probity_overall_ax
,
probity_values_promod
,
probity_values_modeller
,
'
a) Overall Score
'
,
promod_label
,
modeller_label
)
DoThingsWithAxes
(
probity_clash_ax
,
probity_clash_promod
,
probity_clash_modeller
,
'
b) Clash Score
'
,
promod_label
,
modeller_label
)
probity_rotamer_ax
.
plot
(
probity_rotamer_outliers_promod
,
probity_rotamer_outliers_modeller
,
'
.
'
,
color
=
cred
)
# plot zero line
probity_rotamer_ax
.
plot
([
0.0
,
20.0
],
[
0.0
,
20.0
],
color
=
'
k
'
,
linestyle
=
'
--
'
)
probity_rotamer_ax
.
set_title
(
'
c) Rotamer Outliers
'
,
loc
=
'
left
'
,
y
=
1.05
)
probity_rotamer_ax
.
set_xlabel
(
promod_label
)
probity_rotamer_ax
.
set_ylabel
(
modeller_label
)
DoThingsWithAxes
(
probity_rotamer_ax
,
probity_rotamer_outliers_promod
,
probity_rotamer_outliers_modeller
,
'
c) Rotamer Outliers
'
,
promod_label
,
modeller_label
)
probity_ramachandran_ax
.
plot
(
probity_ramachandran_outliers_promod
,
probity_ramachandran_outliers_modeller
,
'
.
'
,
color
=
cred
)
# plot zero line
probity_ramachandran_ax
.
plot
([
0.0
,
30.0
],
[
0.0
,
30.0
],
color
=
'
k
'
,
linestyle
=
'
--
'
)
probity_ramachandran_ax
.
set_title
(
'
d) Ramachandran Outliers
'
,
loc
=
'
left
'
,
y
=
1.05
)
probity_ramachandran_ax
.
set_xlabel
(
promod_label
)
probity_ramachandran_ax
.
set_ylabel
(
modeller_label
)
DoThingsWithAxes
(
probity_ramachandran_ax
,
probity_ramachandran_outliers_promod
,
probity_ramachandran_outliers_modeller
,
'
d) Ramachandran Outliers
'
,
promod_label
,
modeller_label
)
plt
.
tight_layout
(
pad
=
1.2
,
h_pad
=
1.5
,
w_pad
=
1.5
,
rect
=
None
)
plt
.
savefig
(
molprobity_plot_name
)
print
(
'
avg. lddt value
'
,
promod_label
,
np
.
mean
(
lddt_values_promod
))
...
...
This diff is collapsed.
Click to expand it.
modelling/promod3_vs_modeller_molprobity_scores.png
+
0
−
0
View replaced file @
d62287c2
View file @
2cea55a3
48 KiB
|
W:
|
H:
60.9 KiB
|
W:
|
H:
2-up
Swipe
Onion skin
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment