Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
promod3_pipeline_benchmark
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
schwede
promod3_pipeline_benchmark
Commits
d5ea0e01
Commit
d5ea0e01
authored
4 years ago
by
Studer Gabriel
Browse files
Options
Downloads
Patches
Plain Diff
do plot for ProMod3/ProModII comparison
parent
ed0e94b9
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
modelling/do_plots_promodII.py
+163
-0
163 additions, 0 deletions
modelling/do_plots_promodII.py
modelling/promod3_vs_promodII.png
+0
-0
0 additions, 0 deletions
modelling/promod3_vs_promodII.png
with
163 additions
and
0 deletions
modelling/do_plots_promodII.py
0 → 100644
+
163
−
0
View file @
d5ea0e01
import
matplotlib.pyplot
as
plt
import
json
import
numpy
as
np
import
math
promod_label
=
'
ProMod3
'
promod2_label
=
'
ProModII
'
promod_data_file
=
'
promod_scores.json
'
promod2_data_file
=
'
promodII_scores.json
'
plot_name
=
'
promod3_vs_promodII.png
'
cred
=
(
128.0
/
255
,
0.0
,
0.0
)
cblue
=
(
102.0
/
255
,
153.0
/
255
,
204.0
/
255
)
cgreen
=
(
102.0
/
255
,
148.0
/
255
,
0.0
)
cpurple
=
(
100.0
/
255
,
0.0
,
200.0
/
255
)
corange
=
(
255.0
/
255
,
123.0
/
255
,
0.0
)
with
open
(
promod_data_file
)
as
fh
:
promod_data
=
json
.
load
(
fh
)
with
open
(
promod2_data_file
)
as
fh
:
promod2_data
=
json
.
load
(
fh
)
lddt_values_promod
=
list
()
lddt_values_promod2
=
list
()
probity_values_promod
=
list
()
probity_values_promod2
=
list
()
lddt_diffs
=
list
()
probity_diffs
=
list
()
keys
=
list
()
for
key
in
promod_data
:
if
key
in
promod2_data
:
lddt_values_promod
.
append
(
promod_data
[
key
][
'
lddt
'
]
*
100
)
lddt_values_promod2
.
append
(
promod2_data
[
key
][
'
lddt
'
]
*
100
)
lddt_diffs
.
append
(
lddt_values_promod
[
-
1
]
-
lddt_values_promod2
[
-
1
])
probity_values_promod
.
append
(
promod_data
[
key
][
'
MolProbity score
'
])
probity_values_promod2
.
append
(
promod2_data
[
key
][
'
MolProbity score
'
])
probity_diffs
.
append
(
probity_values_promod
[
-
1
]
-
probity_values_promod2
[
-
1
])
keys
.
append
(
key
)
fig
,
axs
=
plt
.
subplots
(
3
,
2
,
figsize
=
(
7
,
10.5
))
hist_ax
=
axs
[
0
,
0
]
# plot both in the same plot
xs
=
np
.
linspace
(
-
7.0
,
7.0
,
300
)
n_lddt
,
bins_lddt
,
patches_lddt
=
hist_ax
.
hist
(
lddt_diffs
,
50
,
range
=
(
-
7.0
,
7.0
),
facecolor
=
cred
,
alpha
=
0.75
,
label
=
'
lDDT
'
,
linewidth
=
2.0
,
edgecolor
=
'
k
'
)
n_probity
,
bins_probity
,
patches_probity
=
hist_ax
.
hist
(
probity_diffs
,
50
,
range
=
(
-
7.0
,
7.0
),
facecolor
=
cblue
,
alpha
=
0.75
,
label
=
'
MolProbity
'
,
linewidth
=
2.0
,
edgecolor
=
'
k
'
)
hist_ax
.
axvline
(
x
=
0.0
,
linewidth
=
2
,
color
=
'
k
'
,
linestyle
=
'
--
'
)
hist_ax
.
set_title
(
'
a) Modelling Benchmark
'
,
loc
=
'
left
'
,
y
=
1.08
,
x
=-
0.11
,
fontsize
=
'
x-large
'
)
hist_ax
.
set_xlabel
(
r
'
$\Delta$ score (ProMod3 - ProModII)
'
,
fontsize
=
'
large
'
)
hist_ax
.
set_ylabel
(
'
N
'
,
fontsize
=
'
large
'
)
hist_ax
.
legend
(
frameon
=
False
)
probity_clash_promod
=
list
()
probity_clash_promod2
=
list
()
probity_rotamer_outliers_promod
=
list
()
probity_rotamer_outliers_promod2
=
list
()
probity_ramachandran_outliers_promod
=
list
()
probity_ramachandran_outliers_promod2
=
list
()
keys
=
list
()
for
key
in
promod_data
:
if
key
in
promod2_data
:
probity_clash_promod
.
append
(
promod_data
[
key
][
'
Clashscore
'
])
probity_clash_promod2
.
append
(
promod2_data
[
key
][
'
Clashscore
'
])
probity_rotamer_outliers_promod
.
append
(
promod_data
[
key
][
'
Rotamer outliers
'
])
probity_rotamer_outliers_promod2
.
append
(
promod2_data
[
key
][
'
Rotamer outliers
'
])
probity_ramachandran_outliers_promod
.
append
(
promod_data
[
key
][
'
Ramachandran outliers
'
])
probity_ramachandran_outliers_promod2
.
append
(
promod2_data
[
key
][
'
Ramachandran outliers
'
])
keys
.
append
(
key
)
def
DoThingsWithAxes
(
ax
,
x_values
,
y_values
,
title
,
xlabel
,
ylabel
):
ax
.
plot
(
x_values
,
y_values
,
'
.
'
,
color
=
(
128.0
/
255
,
0.0
,
0.0
))
ax
.
plot
([
-
1.0
,
1000.0
],
[
-
1.0
,
1000
],
color
=
'
k
'
,
linestyle
=
'
--
'
)
ax
.
set_title
(
title
,
loc
=
'
left
'
,
y
=
1.08
,
x
=-
0.11
,
fontsize
=
'
x-large
'
)
ax
.
set_xlabel
(
xlabel
,
fontsize
=
'
large
'
)
ax
.
set_ylabel
(
ylabel
,
fontsize
=
'
large
'
)
max_val
=
math
.
ceil
(
max
([
max
(
x_values
),
max
(
y_values
)]))
ax
.
set_xlim
([
0
,
max_val
])
ax
.
set_ylim
([
0
,
max_val
])
ax
.
set_aspect
(
'
equal
'
,
'
box
'
)
tick_locations
=
list
()
step_size
=
None
if
max_val
<=
5
:
step_size
=
1
elif
max_val
<=
14
:
step_size
=
2
elif
max_val
<=
30
:
step_size
=
5
elif
max_val
<=
100
:
step_size
=
20
else
:
step_size
=
50
for
i
in
range
(
0
,
int
(
max_val
)
+
step_size
,
step_size
):
tick_locations
.
append
(
i
)
ax
.
set_xticks
(
tick_locations
)
ax
.
set_yticks
(
tick_locations
)
lddt_ax
=
axs
[
0
,
1
]
probity_overall_ax
=
axs
[
1
,
0
]
probity_clash_ax
=
axs
[
1
,
1
]
probity_rotamer_ax
=
axs
[
2
,
0
]
probity_ramachandran_ax
=
axs
[
2
,
1
]
DoThingsWithAxes
(
lddt_ax
,
lddt_values_promod
,
lddt_values_promod2
,
'
b) lDDT
'
,
promod_label
,
promod2_label
)
DoThingsWithAxes
(
probity_overall_ax
,
probity_values_promod
,
probity_values_promod2
,
'
c) MolProbity Overall
'
,
promod_label
,
promod2_label
)
DoThingsWithAxes
(
probity_clash_ax
,
probity_clash_promod
,
probity_clash_promod2
,
'
d) MolProbity Clash
'
,
promod_label
,
promod2_label
)
DoThingsWithAxes
(
probity_rotamer_ax
,
probity_rotamer_outliers_promod
,
probity_rotamer_outliers_promod2
,
'
e) MolProbity Rot. Outliers
'
,
promod_label
,
promod2_label
)
DoThingsWithAxes
(
probity_ramachandran_ax
,
probity_ramachandran_outliers_promod
,
probity_ramachandran_outliers_promod2
,
'
f) MolProbity Ram. Outliers
'
,
promod_label
,
promod2_label
)
plt
.
tight_layout
(
pad
=
1.2
,
h_pad
=
1.5
,
w_pad
=
1.5
,
rect
=
None
)
plt
.
savefig
(
plot_name
,
dpi
=
300
)
print
(
'
avg. lddt value
'
,
promod_label
,
np
.
mean
(
lddt_values_promod
))
print
(
'
avg. lddt value
'
,
promod2_label
,
np
.
mean
(
lddt_values_promod2
))
print
(
'
diff avg lddt value
'
,
np
.
mean
(
lddt_values_promod
)
-
np
.
mean
(
lddt_values_promod2
))
print
(
'
avg. probity value
'
,
promod_label
,
np
.
mean
(
probity_values_promod
))
print
(
'
avg. probity value
'
,
promod2_label
,
np
.
mean
(
probity_values_promod2
))
print
(
'
diff avg probity value
'
,
np
.
mean
(
probity_values_promod
)
-
np
.
mean
(
probity_values_promod2
))
print
(
'
avg. Molprobity clash
'
,
promod_label
,
np
.
mean
(
probity_clash_promod
))
print
(
'
avg. Molprobity clash
'
,
promod2_label
,
np
.
mean
(
probity_clash_promod2
))
print
(
'
avg. Molprobity rotamer outliers
'
,
promod_label
,
np
.
mean
(
probity_rotamer_outliers_promod
))
print
(
'
avg. Molprobity rotamer outliers
'
,
promod2_label
,
np
.
mean
(
probity_rotamer_outliers_promod2
))
print
(
'
avg. Ramachandran outliers
'
,
promod_label
,
np
.
mean
(
probity_ramachandran_outliers_promod
))
print
(
'
avg. Ramachandran outliers
'
,
promod2_label
,
np
.
mean
(
probity_ramachandran_outliers_promod2
))
This diff is collapsed.
Click to expand it.
modelling/promod3_vs_promodII.png
0 → 100644
+
0
−
0
View file @
d5ea0e01
343 KiB
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment