Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import logging
import pandas as pd
LOG = logging.getLogger(__name__)
def read_abundances(transcripts_file: str) -> pd.DataFrame:
"""Read abundance file into dataframe
Args:
transcripts_file (str): Input filename
Returns:
pd.DataFrame: Transcript abundances ("id", "count")
"""
cols: list = ["id", "count"]
if transcripts_file.endswith(".tsv"):
return pd.read_table(transcripts_file, header=None, names=cols)
elif transcripts_file.endswith(".csv"):
return pd.read_csv(transcripts_file, header=None, names=cols)
def filter_df(df: pd.DataFrame, transcripts: list = []) -> pd.DataFrame:
# Filter annotations to exon and highest transcript support level.
# If list of transcript ids is given, filter for that as well.
df_filter = df[
(df["feature"] == "exon")
& (df["free_text"].str.contains('transcript_support_level "1"'))
]
if len(transcripts) > 0:
df_filter = df_filter.str.contains("|".join(transcripts), regex=True)
return df_filter
def str_to_dict(s: str) -> dict:
# split between key/value pairs
# remove empty list items and split key, value pairs
item_list: list = [x.split() for x in s.split(";") if len(x) > 0]
# remove quotes for values and return dictionary
return {item[0]: item[1].strip('"') for item in item_list}
def dict_to_str(d: dict) -> str:
# join key, value pairs from dictionary with a space in a list,
# then join items in list by ;
# end on ;
# check if value is nan
s: str = (
"; ".join([f'{key} "{value}"' for key, value in d.items() if value == value])
+ ";"
)
return s
def reverse_parse_free_text(df_all: pd.DataFrame) -> pd.DataFrame:
# the first 8 columns should be constant according to gtf file standard
# we assume that further columns are parsed free text columns
df_free_text = df_all.iloc[:, 8:]
df = df_all.iloc[:, :8]
df["free_text"] = df_free_text.agg(pd.Series.to_dict, axis=1).apply(dict_to_str)
return df
def write_gtf(df: pd.DataFrame, filename: str) -> None:
# Make sure the data types are correct.
df = df.astype(Gtf.dtypes)
df.to_csv(
filename,
sep="\t",
header=False,
index=False,
quoting=None,
quotechar="'",
mode="a",
)
def write_header(annotations_file: str) -> None:
with open(annotations_file, "w") as fh:
fh.write("\t".join(Gtf.dtypes.keys()) + "\n")
class Gtf:
"""Class to read transcripts annotations file and parse it into a pandas Dataframe.
Args:
annotations_file: Path to gtf file.
Attributes:
annotations_file: File with transcript annotation of the genome
"""
dtypes = {
"seqname": object,
"source": object,
"feature": object,
"start": int,
"end": int,
"score": object,
"strand": object,
"frame": object,
"free_text": object,
}
def __init__(self):
self.parsed = False
self.original_columns = list(self.dtypes.keys())
self.free_text_columns = []
def read_file(self, annotations_file: str) -> None:
# for large annotation files, iterate over lines and filter before saving to dataframe
reader = pd.read_table(
annotations_file,
sep="\t",
comment="#",
names=self.dtypes.keys(),
dtype=self.dtypes,
chunksize=100000,
iterator=True,
)
self.df = pd.concat([filter_df(chunk) for chunk in reader])
def from_dataframe(df: pd.DataFrame) -> None:
self.free_text_columns = [
col for col in df.columns if col not in self.original_columns
]
self.df = df
if not "free_text" in df.columns:
self.parsed = True
def parse_free_text(self):
assert self.parsed == False
# create dataframe with columns for values in free_text column
df_free_text = self.df["free_text"].map(str_to_dict).apply(pd.Series)
# remember which columns come from free_text
self.free_text_columns = df_free_text.columns
# join free_text columns to original dataframe and drop the "free_text" column itself
self.df = self.df.drop("free_text", axis=1)
self.original_columns = self.df.columns
self.df = self.df.join(df_free_text, how="inner")
# remember that current dataframe is parsed, i.e. can't be written in gtf format
self.parsed = True
def reverse_parse_free_text(self):
assert self.parsed == True
# create dataframe with only free_text columns
df_free_text = self.df[self.free_text_columns]
# filter current dataframe to only original columns, except "free_text" column
self.df = self.df[self.original_columns]
# undo parsing and save result in "free_text" column
self.df["free_text"] = df_free_text.agg(pd.Series.to_dict, axis=1).apply(
dict_to_str
)
# remember that current dataframe is not parsed
self.parsed = False
def pick_transcript(self, transcript_id: str) -> pd.DataFrame:
return self.df.query(f"transcript_id == '{transcript_id}'")
def sample_transcripts(
input_transcripts_file: str,
input_annotations_file: str,
prob_inclusion: float,
output_transcripts_file: str,
output_annotations_file: str,
):
transcripts = read_abundances(input_transcripts_file)
annotations = Gtf()
annotations.read_file(input_annotations_file)
annotations.parse_free_text()